R Under development (unstable) (2025-08-24 r88696 ucrt) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(testthat) > library(ptLasso) Loading required package: ggplot2 Loading required package: glmnet Loading required package: Matrix Loaded glmnet 4.1-10 Loading required package: gridExtra > > test_check("ptLasso") Call: cv.ptLasso(x = x, y = y, groups = groups, family = "cox", type.measure = "C", nfolds = 5, foldid = NULL, overall.lambda = "lambda.min", use.case = "inputGroups", group.intercepts = TRUE) type.measure: C alpha overall mean wtdMean group_1 group_2 group_3 group_4 group_5 Overall 0.6054 0.5874 0.6020 0.6116 0.5842 0.6825 0.5179 0.5405 Pretrain 0.0 0.5807 0.6582 0.6459 0.6049 0.6475 0.6766 0.5799 0.7822 Pretrain 0.1 0.5733 0.6192 0.6157 0.5833 0.5870 0.7214 0.5433 0.6611 Pretrain 0.2 0.6333 0.6841 0.6928 0.6868 0.7298 0.6889 0.7333 0.5816 Pretrain 0.3 0.6009 0.6277 0.6488 0.6813 0.6707 0.6413 0.5731 0.5723 Pretrain 0.4 0.6182 0.6342 0.6438 0.6415 0.6667 0.6586 0.6766 0.5275 Pretrain 0.5 0.6575 0.6984 0.7015 0.6634 0.7450 0.7335 0.7200 0.6303 Pretrain 0.6 0.6270 0.6685 0.6660 0.6359 0.6644 0.7262 0.6700 0.6462 Pretrain 0.7 0.5757 0.6163 0.6261 0.6987 0.5970 0.5540 0.5213 0.7105 Pretrain 0.8 0.6069 0.5946 0.6194 0.6819 0.6186 0.5987 0.6000 0.4740 Pretrain 0.9 0.6399 0.6380 0.6533 0.6959 0.6922 0.5659 0.6174 0.6184 Pretrain 1.0 0.6164 0.6418 0.6634 0.7337 0.6412 0.6447 0.5981 0.5911 Individual 0.6164 0.6418 0.6634 0.7337 0.6412 0.6447 0.5981 0.5911 alphahat (fixed) = 0.5 alphahat (varying): group_1 group_2 group_3 group_4 group_5 1.0 0.5 0.5 0.2 0.0 Call: cv.ptLassoMult(x = x, y = y, alphalist = alphalist, type.measure = "mae", nfolds = nfolds, foldid = foldid, verbose = verbose, fitoverall = fitoverall, fitind = fitind, s = s, gamma = gamma, call = this.call, use.case = "multiresponse", group.intercepts = FALSE) type.measure: mae alpha overall mean response_1 response_2 Overall 3.413 1.707 1.693 1.720 Pretrain 0.0 3.324 1.662 1.653 1.671 Pretrain 0.1 3.311 1.656 1.648 1.663 Pretrain 0.2 3.304 1.652 1.646 1.658 Pretrain 0.3 3.307 1.654 1.648 1.660 Pretrain 0.4 3.319 1.660 1.653 1.667 Pretrain 0.5 3.335 1.667 1.659 1.676 Pretrain 0.6 3.354 1.677 1.666 1.687 Pretrain 0.7 3.375 1.688 1.675 1.700 Pretrain 0.8 3.397 1.698 1.684 1.713 Pretrain 0.9 3.418 1.709 1.693 1.725 Pretrain 1.0 3.438 1.719 1.702 1.736 Individual 3.438 1.719 1.702 1.736 alphahat (fixed) = 0.2 alphahat (varying): response_1 response_2 0.2 0.2 Call: cv.ptLasso(x = x, y = y, groups = groups, family = "multinomial", use.case = "targetGroups", type.measure = "class", nfolds = 3, foldid = NULL, overall.lambda = "lambda.min", group.intercepts = TRUE) type.measure: class alpha overall mean group_1 group_2 group_3 Overall 0.02667 Pretrain 0.0 0.03000 0.04333 0.03667 0.04667 0.04667 Pretrain 0.1 0.04000 0.04444 0.04667 0.04000 0.04667 Pretrain 0.2 0.04333 0.04000 0.03667 0.03333 0.05000 Pretrain 0.3 0.05000 0.04000 0.03333 0.04667 0.04000 Pretrain 0.4 0.04333 0.03889 0.02667 0.03667 0.05333 Pretrain 0.5 0.04667 0.04222 0.04667 0.03667 0.04333 Pretrain 0.6 0.03333 0.04222 0.03667 0.05000 0.04000 Pretrain 0.7 0.03667 0.04889 0.04333 0.05333 0.05000 Pretrain 0.8 0.05000 0.04778 0.04000 0.04333 0.06000 Pretrain 0.9 0.04333 0.04333 0.03667 0.04000 0.05333 Pretrain 1.0 0.02333 0.04222 0.03333 0.05000 0.04333 Individual 0.02333 0.04222 0.03333 0.05000 0.04333 alphahat (fixed) = 1 alphahat (varying): group_1 group_2 group_3 0.4 0.2 0.3 [ FAIL 0 | WARN 12 | SKIP 0 | PASS 123 ] [ FAIL 0 | WARN 12 | SKIP 0 | PASS 123 ] > > proc.time() user system elapsed 499.60 9.37 508.96