rm(list = ls(all.names = TRUE)) # Suppress warnings and OpenMP messages options(warn = -1) options(digits=8) Sys.unsetenv("KMP_DEVICE_THREAD_LIMIT") Sys.unsetenv("KMP_ALL_THREADS") Sys.unsetenv("KMP_TEAMS_THREAD_LIMIT") Sys.unsetenv("OMP_THREAD_LIMIT") library(automap) library(psgp) set.seed(13531) data(meuse) observations <- data.frame(x = meuse$x,y = meuse$y,value = log(meuse$zinc)) coordinates(observations) = ~x+y predictionLocations <- spsample(observations, 50, "regular") krigingObject <- createIntamapObject( observations = observations, predictionLocations = predictionLocations, formulaString = as.formula(value~1), params = list(doAnisotropy = TRUE, thresh = quantile(observations$value,0.9)), outputWhat = list(mean=TRUE, variance=TRUE, excprob = 5.9, cumdistr = 5.9, quantile = .1) ) class(krigingObject) <- c("psgp") checkSetup(krigingObject) krigingObject <- preProcess(krigingObject) krigingObject <- estimateParameters(krigingObject) krigingObject <- spatialPredict(krigingObject) krigingObject <- postProcess(krigingObject) # Send predictions back to Java. summary(krigingObject$outputTable) summary(krigingObject$observations) summary(autoKrige(value~1,krigingObject$observations,predictionLocations)$krige_output) autofitVariogram(value~1,krigingObject$observations)$var_model # Restore original settings at the end options(warn = 0) # Restore warning level