library(dplyr) test_that("parallisation works as expected", { suppressMessages({ ss <- set_n( ssC = 80, ssE = 90, ssExt = 150 ) covset1 <- set_cov( n_cat = 2, n_cont = 1, mu_int = c(0, 0.5, 0.5), mu_ext = c(0.7, 0.5, 0.9), var = c(1, 1.2, 1), cov = c(0.5, 0.7, 0.9), prob_int = c(0.45, 0.55), prob_ext = c(0.65, 0.55) ) sample_cov <- simu_cov( ssObj = ss, covObj = covset1, HR = c(0.67), driftHR = c(1), nsim = 4, seed = 47 ) evt <- set_event( event = "weibull", shape = 0.9, lambdaC = 0.0135, beta = 0.5 ) c_int <- set_clin( gamma = c(2, 3, 16), e_itv = c(5, 10), CCOD = "fixed-first", CCOD_t = 45, etaC = c(0.02, 0.03), etaE = c(0.2, 0.3), d_itv = 2 ) c_ext <- set_clin( gamma = 10, CCOD = "event", CCOD_t = 150, etaC = 0.05 ) sample_time <- simu_time( dt = sample_cov, eventObj = evt, clinInt = c_int, clinExt = c_ext, seed = 47 ) res <- run_mcmc( dt = sample_time, set_prior(pred = "all", prior = "gamma", r0 = 1, alpha = c(0, 0)), n.chains = 2, n.adapt = 100, n.burn = 100, n.iter = 200, seed = 47 ) res2 <- run_mcmc_p( dt = sample_time, set_prior(pred = "all", prior = "gamma", r0 = 1, alpha = c(0, 0)), n.chains = 2, n.adapt = 100, n.burn = 100, n.iter = 200, seed = 47, n.cores = 2 ) }) expect_equal(res, res2) })