context("test-workflow") set.seed(123) data <- create_synthetic_data( n_proteins = 50, frac_change = 0.05, n_replicates = 3, n_conditions = 2, method = "effect_random", additional_metadata = FALSE ) data_drc <- create_synthetic_data( n_proteins = 20, frac_change = 0.05, n_replicates = 3, n_conditions = 8, method = "dose_response", concentrations = c(0, 1, 10, 50, 100, 500, 1000, 5000), additional_metadata = FALSE ) if (Sys.getenv("TEST_PROTTI") == "true") { test_that("deprecated median_normalization works", { rlang::with_options(lifecycle_verbosity = "warning", { expect_warning(normalised_data <- data %>% median_normalisation(sample = sample, intensity_log2 = peptide_intensity_missing)) }) rlang::with_options(lifecycle_verbosity = "warning", { expect_warning(normalised_data_drc <- data_drc %>% median_normalisation(sample = sample, intensity_log2 = peptide_intensity_missing)) }) non_normalised <- normalised_data %>% dplyr::group_by(sample) %>% dplyr::summarise(median = median(peptide_intensity_missing, na.rm = TRUE), .groups = "drop") normalised <- normalised_data %>% dplyr::group_by(sample) %>% dplyr::summarise(median = median(normalised_intensity_log2, na.rm = TRUE), .groups = "drop") all_equal_non_normalised <- range(non_normalised$median) / mean(non_normalised$median) # test that medians are unequal before normalizing expect_false(isTRUE(all.equal(all_equal_non_normalised[1], all_equal_non_normalised[2]))) all_equal_normalised <- range(normalised$median) / mean(normalised$median) # test that medians are equal after normalizing expect_equal(all_equal_normalised[1], all_equal_normalised[2]) ## test drc data non_normalised_drc <- normalised_data_drc %>% dplyr::group_by(sample) %>% dplyr::summarise(median = median(peptide_intensity_missing, na.rm = TRUE), .groups = "drop") normalised_drc <- normalised_data_drc %>% dplyr::group_by(sample) %>% dplyr::summarise(median = median(normalised_intensity_log2, na.rm = TRUE), .groups = "drop") all_equal_non_normalised_drc <- range(non_normalised_drc$median) / mean(non_normalised_drc$median) # test that medians are unequal before normalizing expect_false(isTRUE(all.equal(all_equal_non_normalised_drc[1], all_equal_non_normalised_drc[2]))) all_equal_normalised_drc <- range(normalised_drc$median) / mean(normalised_drc$median) # test that medians are equal after normalizing expect_equal(all_equal_normalised_drc[1], all_equal_normalised_drc[2]) }) } normalised_data <- data %>% normalise(sample = sample, intensity_log2 = peptide_intensity_missing, method = "median") normalised_data_drc <- data_drc %>% normalise(sample = sample, intensity_log2 = peptide_intensity_missing, method = "median") test_that("normalise works", { non_normalised <- normalised_data %>% dplyr::group_by(sample) %>% dplyr::summarise(median = median(peptide_intensity_missing, na.rm = TRUE), .groups = "drop") normalised <- normalised_data %>% dplyr::group_by(sample) %>% dplyr::summarise(median = median(normalised_intensity_log2, na.rm = TRUE), .groups = "drop") all_equal_non_normalised <- range(non_normalised$median) / mean(non_normalised$median) # test that medians are unequal before normalizing expect_false(isTRUE(all.equal(all_equal_non_normalised[1], all_equal_non_normalised[2]))) all_equal_normalised <- range(normalised$median) / mean(normalised$median) # test that medians are equal after normalizing expect_equal(all_equal_normalised[1], all_equal_normalised[2]) if (Sys.getenv("TEST_PROTTI") == "true") { ## test drc data non_normalised_drc <- normalised_data_drc %>% dplyr::group_by(sample) %>% dplyr::summarise(median = median(peptide_intensity_missing, na.rm = TRUE), .groups = "drop") normalised_drc <- normalised_data_drc %>% dplyr::group_by(sample) %>% dplyr::summarise(median = median(normalised_intensity_log2, na.rm = TRUE), .groups = "drop") all_equal_non_normalised_drc <- range(non_normalised_drc$median) / mean(non_normalised_drc$median) # test that medians are unequal before normalizing expect_false(isTRUE(all.equal(all_equal_non_normalised_drc[1], all_equal_non_normalised_drc[2]))) all_equal_normalised_drc <- range(normalised_drc$median) / mean(normalised_drc$median) # test that medians are equal after normalizing expect_equal(all_equal_normalised_drc[1], all_equal_normalised_drc[2]) } }) missing_data <- normalised_data %>% assign_missingness( sample = sample, condition = condition, grouping = peptide, intensity = normalised_intensity_log2, ref_condition = "condition_1", retain_columns = c(protein) ) test_that("assign_missingness works", { # not testing noise argument. Also no change of default values for completeness_MAR and completeness_MNAR expect_equal(nrow(data), nrow(missing_data)) expect_true("missingness" %in% colnames(missing_data)) missingness_count <- missing_data %>% dplyr::count(missingness) expect_equal(sort(missingness_count$n), c(12, 516, 618, 3078)) }) if (Sys.getenv("TEST_PROTTI") == "true") { test_that("impute works", { # only test method = "ludovic" and not method = "noise". # Does not test switching off log2 transformation error. imputed_data <- impute(missing_data, sample = sample, grouping = peptide, intensity_log2 = normalised_intensity_log2, condition = condition, comparison = comparison, missingness = missingness, method = "ludovic", retain_columns = protein ) expect_is(imputed_data, "data.frame") expect_equal(sum(imputed_data$imputed), 115) arranged_data <- imputed_data %>% dplyr::filter(peptide == "peptide_1_4") expect_false(is.na(arranged_data$imputed_intensity[4])) }) protein_abundance <- calculate_protein_abundance( data = missing_data, sample = sample, protein_id = protein, precursor = peptide, peptide = peptide, intensity_log2 = normalised_intensity_log2, method = "iq", retain_columns = condition ) protein_abundance_all <- calculate_protein_abundance( data = missing_data, sample = sample, protein_id = protein, precursor = peptide, peptide = peptide, intensity_log2 = normalised_intensity_log2, method = "sum", for_plot = TRUE ) test_that("calculate_protein_abundance works", { arranged_data <- protein_abundance %>% dplyr::filter(protein == "protein_1") expect_is(protein_abundance, "data.frame") expect_equal(round(arranged_data$normalised_intensity_log2, digits = 2), c(16.78, 16.94, 16.85, 16.81, 16.83, 16.82)) expect_equal(nrow(protein_abundance), 279) expect_equal(ncol(protein_abundance), 4) arranged_data <- protein_abundance_all %>% dplyr::filter(protein == "protein_1" & peptide == "protein_intensity") expect_equal(round(arranged_data$normalised_intensity_log2, digits = 2), c(20.87, 20.97, 20.96, 20.81, 20.81, 20.86)) expect_is(protein_abundance_all, "data.frame") expect_equal(nrow(protein_abundance_all), 4005) expect_equal(ncol(protein_abundance_all), 4) }) } if (Sys.getenv("TEST_PROTTI") == "true") { test_that("deprecated plot_peptide_profiles works", { # not testing split_all = TRUE. Also not testing protein_abundance_plot = FALSE. expect_warning(p <- plot_peptide_profiles( data = protein_abundance_all, sample = sample, peptide = peptide, intensity_log2 = normalised_intensity_log2, grouping = protein, targets = c("protein_1", "protein_2"), protein_abundance_plot = TRUE )) expect_is(p, "list") expect_is(p[[1]], "ggplot") expect_error(print(p[[1]]), NA) rlang::with_options(lifecycle_verbosity = "warning", { expect_warning(p_peptides <- plot_peptide_profiles( data = missing_data, sample = sample, peptide = peptide, intensity_log2 = normalised_intensity_log2, grouping = protein, targets = c("protein_12"), protein_abundance_plot = FALSE )) }) expect_is(p_peptides, "list") expect_is(p_peptides[[1]], "ggplot") expect_error(print(p_peptides[[1]]), NA) }) } if (Sys.getenv("TEST_PROTTI") == "true") { test_that("peptide_profile_plot works", { # not testing split_all = TRUE. Also not testing protein_abundance_plot = FALSE. p <- peptide_profile_plot( data = protein_abundance_all, sample = sample, peptide = peptide, intensity_log2 = normalised_intensity_log2, grouping = protein, targets = c("protein_1", "protein_2"), protein_abundance_plot = TRUE ) expect_is(p, "list") expect_is(p[[1]], "ggplot") expect_error(print(p[[1]]), NA) if (Sys.getenv("TEST_PROTTI") == "true") { p_peptides <- peptide_profile_plot( data = missing_data, sample = sample, peptide = peptide, intensity_log2 = normalised_intensity_log2, grouping = protein, targets = c("protein_12"), protein_abundance_plot = FALSE ) expect_is(p_peptides, "list") expect_is(p_peptides[[1]], "ggplot") expect_error(print(p_peptides[[1]]), NA) } }) } diff <- calculate_diff_abundance( data = missing_data, sample = sample, condition = condition, grouping = peptide, intensity_log2 = normalised_intensity_log2, missingness = missingness, comparison = comparison, method = "t-test", retain_columns = c(protein) ) test_that("calculate_diff_abundance works", { expect_is(diff, "data.frame") expect_equal(nrow(diff), 601) expect_equal(ncol(diff), 9) expect_equal(round(min(diff$adj_pval, na.rm = TRUE), digits = 9), 0.00758761) if (Sys.getenv("TEST_PROTTI") == "true") { data_mean_sd <- missing_data %>% tidyr::drop_na() %>% dplyr::group_by(condition, peptide, protein) %>% dplyr::summarise( mean = mean(normalised_intensity_log2, na.rm = TRUE), sd = sd(normalised_intensity_log2, na.rm = TRUE), n = dplyr::n(), .groups = "drop" ) diff_mean_sd <- calculate_diff_abundance( data = data_mean_sd, condition = condition, grouping = peptide, mean = mean, sd = sd, n_samples = n, ref_condition = "condition_1", method = "t-test_mean_sd", retain_columns = c(protein) ) diff_moderated <- calculate_diff_abundance( data = missing_data, sample = sample, condition = condition, grouping = peptide, intensity_log2 = normalised_intensity_log2, missingness = missingness, comparison = comparison, method = "moderated_t-test", retain_columns = c(protein) ) diff_proDA <- calculate_diff_abundance( data = missing_data, sample = sample, condition = condition, grouping = peptide, intensity_log2 = normalised_intensity_log2, missingness = missingness, comparison = comparison, method = "proDA", retain_columns = c(protein) ) expect_is(diff_mean_sd, "data.frame") expect_is(diff_moderated, "data.frame") expect_is(diff_proDA, "data.frame") expect_equal(nrow(diff_mean_sd), 599) expect_equal(nrow(diff_moderated), 601) expect_equal(nrow(diff_proDA), 601) expect_equal(ncol(diff_mean_sd), 14) expect_equal(ncol(diff_moderated), 13) expect_equal(ncol(diff_proDA), 12) expect_equal(round(min(diff_mean_sd$adj_pval, na.rm = TRUE), digits = 9), 0.00758761) expect_equal(round(min(diff_moderated$adj_pval, na.rm = TRUE), digits = 9), 5.7616e-05) expect_equal(round(min(diff_proDA$adj_pval, na.rm = TRUE), digits = 5), 0.00125) } }) test_that("correct_lip_for_abundance works", { data <- rapamycin_10uM diff_lip <- data %>% dplyr::mutate(fg_intensity_log2 = log2(fg_quantity)) %>% assign_missingness( sample = r_file_name, condition = r_condition, intensity = fg_intensity_log2, grouping = eg_precursor_id, ref_condition = "control", retain_columns = "pg_protein_accessions" ) %>% calculate_diff_abundance( sample = r_file_name, condition = r_condition, grouping = eg_precursor_id, intensity_log2 = fg_intensity_log2, comparison = comparison, method = "t-test", retain_columns = "pg_protein_accessions" ) diff_trp <- data %>% dplyr::group_by(pg_protein_accessions, r_file_name) %>% dplyr::mutate(pg_quantity = sum(fg_quantity)) %>% dplyr::distinct( r_condition, r_file_name, pg_protein_accessions, pg_quantity ) %>% dplyr::mutate(pg_intensity_log2 = log2(pg_quantity)) %>% assign_missingness( sample = r_file_name, condition = r_condition, intensity = pg_intensity_log2, grouping = pg_protein_accessions, ref_condition = "control" ) %>% calculate_diff_abundance( sample = r_file_name, condition = r_condition, grouping = pg_protein_accessions, intensity_log2 = pg_intensity_log2, comparison = comparison, method = "t-test" ) corrected_satterthwaite <- correct_lip_for_abundance( lip_data = diff_lip, trp_data = diff_trp, protein_id = pg_protein_accessions, grouping = eg_precursor_id, retain_columns = c("missingness"), method = "satterthwaite" ) corrected_no_df_approximation <- correct_lip_for_abundance( lip_data = diff_lip, trp_data = diff_trp, protein_id = pg_protein_accessions, grouping = eg_precursor_id, retain_columns = c("missingness"), method = "no_df_approximation" ) expect_is(corrected_satterthwaite, "data.frame") expect_equal(corrected_satterthwaite$adj_diff[1], 2.474938, tolerance = 1e-3) expect_equal(corrected_satterthwaite$adj_std_error[1], 0.1531189, tolerance = 1e-3) expect_equal(corrected_satterthwaite$adj_pval[1], 1.561211e-05, tolerance = 1e-3) expect_equal(corrected_satterthwaite$df[1], 10.13124, tolerance = 1e-3) expect_is(corrected_no_df_approximation, "data.frame") expect_equal(corrected_no_df_approximation$adj_diff[1], 2.474938, tolerance = 1e-3) expect_equal(corrected_no_df_approximation$adj_std_error[1], 0.1531189, tolerance = 1e-3) expect_equal(corrected_no_df_approximation$df[1], 6) }) if (Sys.getenv("TEST_PROTTI") == "true") { test_that("deprecated diff_abundance works", { rlang::with_options(lifecycle_verbosity = "warning", { expect_warning(diff_deprecated <- diff_abundance( data = missing_data, sample = sample, condition = condition, grouping = peptide, intensity_log2 = normalised_intensity_log2, missingness = missingness, comparison = comparison, method = "t-test", retain_columns = c(protein) )) }) expect_is(diff_deprecated, "data.frame") expect_equal(nrow(diff_deprecated), 601) expect_equal(ncol(diff_deprecated), 9) expect_equal(round(min(diff_deprecated$adj_pval, na.rm = TRUE), digits = 9), 0.00758761) data_mean_sd <- missing_data %>% tidyr::drop_na() %>% dplyr::group_by(condition, peptide, protein) %>% dplyr::summarise( mean = mean(normalised_intensity_log2, na.rm = TRUE), sd = sd(normalised_intensity_log2, na.rm = TRUE), n = dplyr::n(), .groups = "drop" ) rlang::with_options(lifecycle_verbosity = "warning", { expect_warning(diff_mean_sd_deprecated <- diff_abundance( data = data_mean_sd, condition = condition, grouping = peptide, mean = mean, sd = sd, n_samples = n, ref_condition = "condition_1", method = "t-test_mean_sd", retain_columns = c(protein) )) }) rlang::with_options(lifecycle_verbosity = "warning", { expect_warning(diff_moderated_deprecated <- diff_abundance( data = missing_data, sample = sample, condition = condition, grouping = peptide, intensity_log2 = normalised_intensity_log2, missingness = missingness, comparison = comparison, method = "moderated_t-test", retain_columns = c(protein) )) }) rlang::with_options(lifecycle_verbosity = "warning", { expect_warning(diff_proDA_deprecated <- diff_abundance( data = missing_data, sample = sample, condition = condition, grouping = peptide, intensity_log2 = normalised_intensity_log2, missingness = missingness, comparison = comparison, method = "proDA", retain_columns = c(protein) )) }) expect_is(diff_mean_sd_deprecated, "data.frame") expect_is(diff_moderated_deprecated, "data.frame") expect_is(diff_proDA_deprecated, "data.frame") expect_equal(nrow(diff_mean_sd_deprecated), 599) expect_equal(nrow(diff_moderated_deprecated), 601) expect_equal(nrow(diff_proDA_deprecated), 601) expect_equal(ncol(diff_mean_sd_deprecated), 14) expect_equal(ncol(diff_moderated_deprecated), 13) expect_equal(ncol(diff_proDA_deprecated), 12) expect_equal(round(min(diff_mean_sd_deprecated$adj_pval, na.rm = TRUE), digits = 9), 0.00758761) expect_equal(round(min(diff_moderated_deprecated$adj_pval, na.rm = TRUE), digits = 9), 5.7616e-05) expect_equal(round(min(diff_proDA_deprecated$adj_pval, na.rm = TRUE), digits = 5), 0.00125) }) } if (Sys.getenv("TEST_PROTTI") == "true") { test_that("depreciated plot_pval_distribution works", { rlang::with_options(lifecycle_verbosity = "warning", { expect_warning(p <- plot_pval_distribution( diff, peptide, pval )) }) expect_is(p, "ggplot") expect_error(print(p), NA) }) } if (Sys.getenv("TEST_PROTTI") == "true") { test_that("pval_distribution_plot works", { p <- pval_distribution_plot( diff, peptide, pval ) expect_is(p, "ggplot") expect_error(print(p), NA) }) } if (Sys.getenv("TEST_PROTTI") == "true") { test_that("deprecated volcano_protti works", { sig_prots <- paste0("protein_", 1:25) rlang::with_options(lifecycle_verbosity = "warning", { expect_warning(p <- volcano_protti( data = diff, grouping = peptide, log2FC = diff, significance = adj_pval, method = "significant", target_column = protein, title = "Test tile", x_axis_label = "test x-Axis", y_axis_label = "test y-Axis", log2FC_cutoff = 1, significance_cutoff = 0.05, interactive = FALSE )) }) expect_is(p, "ggplot") expect_error(print(p), NA) rlang::with_options(lifecycle_verbosity = "warning", { expect_warning(p_interactive <- volcano_protti( data = diff, grouping = peptide, log2FC = diff, significance = adj_pval, method = "significant", target_column = protein, title = "Test tile", x_axis_label = "test x-Axis", y_axis_label = "test y-Axis", log2FC_cutoff = 1, significance_cutoff = 0.05, interactive = TRUE )) }) expect_is(p_interactive, "plotly") expect_error(print(p_interactive), NA) rlang::with_options(lifecycle_verbosity = "warning", { expect_warning(p_target <- volcano_protti( data = diff, grouping = peptide, log2FC = diff, significance = adj_pval, method = "target", target = "protein_3", target_column = protein, title = "Test tile", x_axis_label = "test x-Axis", y_axis_label = "test y-Axis", log2FC_cutoff = 1, significance_cutoff = 0.05, interactive = FALSE )) }) expect_is(p_target, "ggplot") expect_error(print(p_target), NA) }) } test_that("volcano_plot works", { sig_prots <- paste0("protein_", 1:25) p <- volcano_plot( data = diff, grouping = peptide, log2FC = diff, significance = adj_pval, method = "significant", target_column = protein, title = "Test tile", x_axis_label = "test x-Axis", y_axis_label = "test y-Axis", log2FC_cutoff = 1, significance_cutoff = 0.05, interactive = FALSE ) expect_is(p, "ggplot") expect_error(print(p), NA) if (Sys.getenv("TEST_PROTTI") == "true") { p_interactive <- volcano_plot( data = diff, grouping = peptide, log2FC = diff, significance = pval, method = "significant", target_column = protein, title = "Test tile", x_axis_label = "test x-Axis", y_axis_label = "test y-Axis", log2FC_cutoff = 1, significance_cutoff = c(0.05, "adj_pval"), interactive = TRUE ) expect_is(p_interactive, "plotly") expect_error(print(p_interactive), NA) } p_target <- volcano_plot( data = diff, grouping = peptide, log2FC = diff, significance = adj_pval, method = "target", target = "protein_3", target_column = protein, title = "Test tile", x_axis_label = "test x-Axis", y_axis_label = "test y-Axis", log2FC_cutoff = 1, significance_cutoff = 0.05, interactive = FALSE ) expect_is(p_target, "ggplot") expect_error(print(p_target), NA) }) if (Sys.getenv("TEST_PROTTI") == "true") { drc_fit <- fit_drc_4p( data = normalised_data_drc, sample = sample, grouping = peptide, response = normalised_intensity_log2, dose = concentration, n_replicate_completeness = 2, n_condition_completeness = 4, log_logarithmic = TRUE, retain_columns = c(protein) ) test_that("fit_drc_4p works", { # did not test the argument include_models = TRUE expect_is(drc_fit, "data.frame") expect_equal(nrow(drc_fit), 306) expect_equal(ncol(drc_fit), 18) expect_equal(round(max(drc_fit$correlation, na.rm = TRUE), digits = 3), 0.876) expect_equal(round(min(drc_fit$anova_pval, na.rm = TRUE), digits = 6), 0.007297) }) } if (Sys.getenv("TEST_PROTTI") == "true") { test_that("deprecated plot_drc_4p works", { rlang::with_options(lifecycle_verbosity = "warning", { expect_warning(p <- plot_drc_4p( data = drc_fit, grouping = peptide, response = normalised_intensity_log2, dose = concentration, targets = c("peptide_1_2"), unit = "uM", y_axis_name = "test y-Axis" )) }) expect_is(p, "list") expect_warning(print(p), NA) rlang::with_options(lifecycle_verbosity = "warning", { expect_warning(p_facet <- plot_drc_4p( data = drc_fit, grouping = peptide, response = normalised_intensity_log2, dose = concentration, targets = c("peptide_1_2", "peptide_1_1"), unit = "uM" )) }) expect_is(p_facet, "list") expect_warning(expect_error(print(p_facet), NA)) }) } if (Sys.getenv("TEST_PROTTI") == "true") { test_that("drc_4p_plot works", { p <- drc_4p_plot( data = drc_fit, grouping = peptide, response = normalised_intensity_log2, dose = concentration, targets = c("peptide_1_2"), unit = "uM", y_axis_name = "test y-Axis" ) expect_is(p, "list") expect_warning(print(p), NA) p_facet <- drc_4p_plot( data = drc_fit, grouping = peptide, response = normalised_intensity_log2, dose = concentration, targets = c("peptide_1_2", "peptide_1_1"), unit = "uM" ) expect_is(p_facet, "list") expect_warning(expect_error(print(p_facet), NA)) }) } test_that("filter_cv works", { normalised_data_filtered <- normalised_data %>% filter_cv(peptide, condition, peptide_intensity_missing, cv_limit = 0.25, min_conditions = 2) normalised_data_filtered_cv_count <- normalised_data_filtered %>% dplyr::group_by(peptide, condition) %>% dplyr::summarise( cv_count = sum((sd(2^peptide_intensity_missing, na.rm = TRUE) / mean(2^peptide_intensity_missing, na.rm = TRUE)) > 0.25), .groups = "drop" ) %>% dplyr::filter(cv_count > 0) expect_is(normalised_data_filtered, "data.frame") expect_gt(nrow(normalised_data), nrow(normalised_data_filtered)) expect_equal(nrow(normalised_data_filtered_cv_count), 0) normalised_data_drc_filtered <- normalised_data_drc %>% filter_cv(peptide, condition, peptide_intensity_missing, cv_limit = 0.25, min_conditions = 6) normalised_data_filtered_drc_cv_count <- normalised_data_drc_filtered %>% dplyr::group_by(peptide, condition) %>% dplyr::summarise( cv_count = sum((sd(2^peptide_intensity_missing, na.rm = TRUE) / mean(2^peptide_intensity_missing, na.rm = TRUE)) > 0.25), .groups = "drop" ) %>% dplyr::filter(cv_count > 0) expect_is(normalised_data_drc_filtered, "data.frame") expect_gt(nrow(normalised_data_drc), nrow(normalised_data_drc_filtered)) expect_gt(nrow(normalised_data_filtered_drc_cv_count), 0) }) test_that("calculate_aa_scores works", { peptide_data <- tibble::tibble( adj_pval = c(0.001, 0.0001, 0.4, 0.2, 0.001, 0.0001, 0.001, 0.0001, 0.4, 0.2, 0.001, 0.0001), diff = c(4.3, -5.8, 0.23, -0.5, 6.5, -7.3, 4.3, -5.8, 0.23, -0.5, 6.5, -7.3), start = c(1, 1, 8, 12, 12, 18, 1, 3, 8, 10, 14, 15), end = c(10, 6, 16, 20, 19, 25, 7, 10, 15, 15, 20, 20), uniprot_id = c( "P37840", "P37840", "P37840", "P37840", "P37840", "P37840", "P00558", "P00558", "P00558", "P00558", "P00558", "P00558" ) ) aa_fingerprint <- calculate_aa_scores(peptide_data, protein = uniprot_id, diff = diff, adj_pval = adj_pval, start_position = start, end_position = end ) expect_is(aa_fingerprint, "data.frame") expect_equal(nrow(aa_fingerprint), 45) expect_equal(ncol(aa_fingerprint), 3) })