test_that("split conformal quantile intervals", { skip_if_not_installed("modeldata") skip_if_not_installed("nnet") # ---------------------------------------------------------------------------- suppressPackageStartupMessages(library(workflows)) suppressPackageStartupMessages(library(modeldata)) suppressPackageStartupMessages(library(dplyr)) # ---------------------------------------------------------------------------- set.seed(111) sim_data <- sim_regression(500) sim_cal <- sim_regression(100) sim_new <- sim_regression(2) wflow <- workflow() %>% add_model(parsnip::linear_reg()) %>% add_formula(outcome ~ .) %>% fit(sim_data) # ------------------------------------------------------------------------------ expect_snapshot_error( int_conformal_quantile(lm(outcome ~ ., sim_data), sim_cal) ) expect_snapshot_error( int_conformal_quantile(wflow, sim_data[, -2], sim_cal[, -1]) ) expect_snapshot_error( int_conformal_quantile(wflow, sim_data, sim_cal[, -2]) ) # ------------------------------------------------------------------------------ lm_int <- int_conformal_quantile(wflow, sim_data, sim_cal, level = 0.90, trees = 20) expect_snapshot_error( predict(lm_int, sim_new, level = 0.90) ) expect_snapshot(lm_int) expect_true(inherits(lm_int, "int_conformal_quantile")) new_int <- predict(lm_int, sim_new) exp_ptype <- dplyr::tibble( .pred = numeric(0), .pred_lower = numeric(0), .pred_upper = numeric(0) ) expect_true(inherits(new_int, "tbl_df")) expect_equal(new_int[0, ], exp_ptype) expect_equal( colnames(new_int), c(".pred", ".pred_lower", ".pred_upper") ) expect_equal( nrow(new_int), nrow(sim_new) ) })