# START # Data with one region only ----------------------------------------------- # example data: set.seed(123) dt <- rdata(R=1, B=1, N=4) expect_error( dt[, index.pairs(p=price, r=region, n=product, settings=list(type="bla"))] ) expect_error( dt[, index.pairs(p=price, r=region, n=product, settings=list(type="laspeyres"))] ) expect_warning( dt[, index.pairs(p=price, r=region, n=product, q=quantity, settings=list(type="young", qbase="bla"))] ) expect_equal( is.data.table(dt[, index.pairs(p=price, r=region, n=product, settings=list(type="jevons"))]), TRUE ) expect_equal( colnames(dt[, index.pairs(p=price, r=region, n=product, settings=list(type=c("jevons","carli")))]), c("base","region","jevons","carli") ) expect_equal( dt[, index.pairs(p=price, r=region, n=product, settings=list(type="jevons"))], data.table("base"=as.factor(1), "region"=as.factor(1), "jevons"=1, key=c("base","region")) ) expect_equal( dt[, index.pairs(p=price, r=region, n=product, settings=list(type=c("jevons","carli")))], data.table("base"=as.factor(1), "region"=as.factor(1), "jevons"=1, "carli"=1, key=c("base","region")) ) expect_equal( dt[, geks(p=price, r=region, n=product)], c("1"=1) ) # Data with one product only ---------------------------------------------- # example data: set.seed(123) dt <- rdata(R=4, B=1, N=1) expect_no_error( dt[, index.pairs(p=price, r=region, n=product, settings=list(type="jevons"))] ) expect_no_error( dt[, geks(p=price, r=region, n=product)], ) # Data with gaps ---------------------------------------------------------- # example data: set.seed(123) dt <- rdata(R=3, B=1, N=4, gaps=0.2) dt[, "share" := price*quantity/sum(price*quantity), by="region"] dt[, "weight" := rweights(r=region, b=product, type=~b)] # index.pairs(): res.expec <- rbind( dt[, jevons(p=price, r=region, n=product, base="1")], dt[, jevons(p=price, r=region, n=product, base="2")], dt[, jevons(p=price, r=region, n=product, base="3")] ) rownames(res.expec) <- c("1","2","3") expect_equal( as.matrix(dcast(data=dt[, index.pairs(p=price, r=region, n=product, settings=list(type="jevons"))], formula=base~region, value.var="jevons"), rownames="base"), res.expec ) res.expec[lower.tri(res.expec)] <- NA expect_equal( as.matrix(dcast(data=dt[, index.pairs(p=price, r=region, n=product, settings=list(type="jevons", all.pairs=FALSE))], formula=base~region, value.var="jevons"), rownames="base"), res.expec ) expect_equal( nrow(dt[, index.pairs(p=price, r=region, n=product, settings=list(type="jevons", all.pairs=TRUE))]), 3^2 ) expect_equal( nrow(dt[, index.pairs(p=price, r=region, n=product, settings=list(type="jevons", all.pairs=FALSE))]), 3*(3+1)/2 ) # geks(): geks.est <- dt[, geks(p=price, r=region, n=product, w=weight, base=NULL, settings=list(type="toernqvist"))] geks.est1 <- dt[, geks(p=price, r=region, n=product, w=weight, base="1", settings=list(type="toernqvist"))] geks.est2 <- dt[, geks(p=price, r=region, n=product, w=weight, base="2", settings=list(type="toernqvist"))] expect_equal(is.vector(geks.est1), TRUE) expect_equal(is.vector(geks.est2), TRUE) expect_equal(geks.est1[1], c("1"=1)) expect_equal(geks.est2[2], c("2"=1)) expect_equal(prod(geks.est), 1) expect_equal(geks.est1, geks.est2/geks.est2[1]) expect_equal(geks.est1, geks.est/geks.est[1]) # expenditure share weights versus quantities identical: geks.est3 <- dt[, geks(p=price, r=region, n=product, w=share, base="1", settings=list(type="toernqvist"))] geks.est4 <- dt[, geks(p=price, r=region, n=product, q=quantity, base="1", settings=list(type="toernqvist"))] expect_equal(geks.est3, geks.est4) # wmethod='shares' still transitive: geks.est5 <- dt[, geks(p=price, r=region, n=product, q=quantity, base="1", settings=list(type="toernqvist", wmethod="shares"))] geks.est6 <- dt[, geks(p=price, r=region, n=product, q=quantity, base=NULL, settings=list(type="toernqvist", wmethod="shares"))] expect_equal(geks.est5, geks.est6/geks.est6[1]) # multiple index types at once: geks.est7 <- dt[, geks(p=price, r=region, n=product, q=quantity, base="1", settings=list(type=c("toernqvist","jevons")))] expect_equal(is.matrix(geks.est7), TRUE) expect_equal(dim(geks.est7), c(2,3)) expect_true(all(grepl("geks-", rownames(geks.est7)))) # Settings ---------------------------------------------------------------- expect_no_error( dt[, geks(p=price, r=region, n=product, q=quantity, base="1", settings=list(type="toernqvist", chatty=FALSE))] ) expect_error( dt[, geks(p=price, r=region, n=product, q=quantity, base="1", settings=list(type="toernqvist", wmethod="bla", chatty=FALSE))] ) expect_error( dt[, index.pairs(p=price, r=region, n=product, q=quantity, settings=list(type="toernqvist", all.pairs="bla", chatty=FALSE))] ) expect_error( dt[, index.pairs(p=price, r=region, n=product, q=quantity, settings=list(type="bla"))] ) # Non-connected data ------------------------------------------------------ # example data: set.seed(123) dt1 <- pricelevels::rdata(R=3, B=1, N=5) dt2 <- pricelevels::rdata(R=4, B=1, N=4) dt2[, "region":=factor(region, labels=4:7)] dt2[, "product":=factor(product, labels=6:9)] dt <- rbind(dt1, dt2) expect_equal( dim(as.matrix(dcast(data=dt[, index.pairs(p=price, r=region, n=product, q=quantity, settings=list(chatty=FALSE))], formula=base~region, value.var="jevons"), rownames="base")), c(7,7) ) expect_equal( nrow(dt[, index.pairs(p=price, r=region, n=product, q=quantity, settings=list(chatty=FALSE))]), 3*3+4*4 ) expect_equal( dt[, geks(p=price, r=region, n=product, q=quantity, base="1", settings=list(chatty=FALSE, connect=TRUE))][1], c("1"=1) ) expect_equal( dt[, geks(p=price, r=region, n=product, q=quantity, base="1", settings=list(chatty=FALSE, connect=TRUE))][4:7], setNames(rep(NA_real_, 4), 4:7) ) expect_equal( dt[, geks(p=price, r=region, n=product, q=quantity, base="4", settings=list(chatty=FALSE, connect=TRUE))][1:3], setNames(rep(NA_real_, 3), 1:3) ) expect_equal( dt[, geks(p=price, r=region, n=product, q=quantity, base="4", settings=list(chatty=FALSE, connect=TRUE))][4], c("4"=1) ) # Misc -------------------------------------------------------------------- # example data without gaps: set.seed(123) dt <- rdata(R=3, B=1, N=4) geks.est <- dt[, geks(p=price, r=region, n=product, base=NULL)] geks.est1 <- dt[, geks(p=price, r=region, n=product, base="1")] geks.est2 <- dt[, geks(p=price, r=region, n=product, base="2")] jev.est1 <- dt[, jevons(p=price, r=region, n=product, base="1")] expect_equal(geks.est1[1], c("1"=1)) expect_equal(geks.est2[2], c("2"=1)) expect_equal(prod(geks.est), 1) expect_equal(geks.est1, geks.est2/geks.est2[1]) expect_equal(geks.est1, jev.est1) # example data with weights=1: dt <- rdata(R=5, B=1, N=10) dt[, "weights" := 1] expect_equal( dt[, index.pairs(p=price, r=region, n=product, settings=list(type="jevons"))]$jevons, dt[, index.pairs(price, region, product, w=weights, settings=list(type="toernqvist"))]$toernqvist ) expect_equal( dt[, index.pairs(price, region, product, settings=list(type = "carli"))]$carli, dt[, index.pairs(price, region, product, w=weights, settings=list(type = "laspeyres"))]$laspeyres ) expect_equal( dt[, index.pairs(price, region, product, settings=list(type = "harmonic"))]$harmonic, dt[, index.pairs(price, region, product, w=weights, settings=list(type = "paasche"))]$paasche ) # example data with weights=~b: set.seed(123) dt <- rdata(R=3, B=1, N=4) dt[, "weight" := rweights(r=region, b=product, type=~b)] geks.est1 <- dt[, geks(p=price, r=region, n=product, w=weight, base="1", settings=list(type="toernqvist"))] geks.est2 <- dt[, geks(p=price, r=region, n=product, w=weight, base=NULL, settings=list(type="toernqvist"))] toernq.est1 <- dt[, toernqvist(p=price, r=region, n=product, w=weight, base="1")] expect_equal(geks.est1[1], c("1"=1)) expect_equal(prod(geks.est2), 1) expect_equal(geks.est1, geks.est2/geks.est2[1]) expect_equal(geks.est1, toernq.est1) # example data with gaps: set.seed(123) dt <- rdata(R=5, B=1, N=9) # reciprocal of paasche identical to laspeyres: expect_equal( t(1/as.matrix(dcast(data=dt[, index.pairs(p=price, r=region, n=product, q=quantity, settings=list(type="paasche"))], formula=base~region, value.var="paasche"), rownames="base")), as.matrix(dcast(data=dt[, index.pairs(p=price, r=region, n=product, q=quantity, settings=list(type="laspeyres"))], formula=base~region, value.var="laspeyres"), rownames="base") ) # hence, geks-fisher, geks-laspeyres, and geks-paasche identical: expect_equal( dt[, geks(p=price, r=region, n=product, q=quantity, settings=list(type="fisher"))], dt[, geks(p=price, r=region, n=product, q=quantity, settings=list(type="laspeyres"))] ) expect_equal( dt[, geks(p=price, r=region, n=product, q=quantity, settings=list(type="fisher"))], dt[, geks(p=price, r=region, n=product, q=quantity, settings=list(type="paasche"))] ) # END