library(prabclus) options(digits=4) data(kykladspecreg) data(nb) set.seed(1234) x <- prabinit(prabmatrix=kykladspecreg, neighborhood=nb) p1 <- prabtest(x, times=3, pd=0.35, ignore.richness=TRUE) p2 <- prabtest(x, times=3, pd=0.35, teststat="lcomponent") p3 <- prabtest(x, times=3, pd=0.35, teststat="isovertice") p4 <- prabtest(x, times=3, pd=0.35, teststat="nn", sf.sim=TRUE) p5 <- prabtest(x, times=3, pd=0.35, teststat="inclusions") summary(p1) summary(p2) summary(p3) summary(p4) summary(p5) data(veronica) vnb <- coord2dist(coordmatrix=veronica.coord[1:50,], cut=20, file.format="decimal2",neighbors=TRUE) vei <- prabinit(prabmatrix=veronica[1:50,], neighborhood=vnb$nblist,nbbetweenregions=FALSE, distance="jaccard") print(vei) # library(spdep) data(siskiyou) x <- prabinit(prabmatrix=siskiyou, neighborhood=siskiyou.nb, distance="logkulczynski") build.nblist(x) a1 <- abundtest(x, times=5, p.nb=0.0465) a2 <- abundtest(x, times=5, p.nb=0.0465, teststat="groups", groupvector=siskiyou.groups) # These settings are chosen to make the example execution # faster; usually you will use abundtest(x). summary(a1) summary(a2) options(digits=2) prab.sarestimate(x) regpop.sar(x, p.nb=0.046) options(digits=4) x <- prabinit(prabmatrix=siskiyou, neighborhood=siskiyou.nb, distance="none",toprab=TRUE,toprabp=0.5) x2 <- prabinit(prabmatrix=siskiyou, neighborhood=siskiyou.nb, distance="none",toprab=TRUE,toprabp=0) x$prab x2$prab