### library(poolr); library(testthat); Sys.setenv(NOT_CRAN="true") source("tolerances.r") context("Checking bonferroni() function") test_that("bonferroni() works correctly under independence.", { res <- bonferroni(grid2ip.p) out <- capture.output(print(res)) expect_equivalent(c(res$p), 0.03881585, tolerance = p_tol) expect_equivalent(c(res$statistic), 0.001687646, tolerance = stat_tol) }) test_that("bonferroni() works correctly with effective number of tests.", { res_nyh <- bonferroni(grid2ip.p, adjust = "nyholt", R = mvnconv(grid2ip.ld, target = "p", cov2cor = TRUE)) res_lj <- bonferroni(grid2ip.p, adjust = "liji", R = mvnconv(grid2ip.ld, target = "p", cov2cor = TRUE)) res_gao <- bonferroni(grid2ip.p, adjust = "gao", R = mvnconv(grid2ip.ld, target = "p", cov2cor = TRUE)) res_gal <- bonferroni(grid2ip.p, adjust = "galwey", R = mvnconv(grid2ip.ld, target = "p", cov2cor = TRUE)) res_che <- bonferroni(grid2ip.p, adjust = "chen", R = mvnconv(grid2ip.ld, target = "p", cov2cor = TRUE)) res_user <- bonferroni(grid2ip.p, m = 18) out <- capture.output(print(res_nyh)) out <- capture.output(print(res_lj)) out <- capture.output(print(res_gao)) out <- capture.output(print(res_gal)) out <- capture.output(print(res_che)) out <- capture.output(print(res_user)) expect_equivalent(c(res_nyh$p), 0.0371282, tolerance = p_tol) expect_equivalent(c(res_nyh$statistic), 0.001687646, tolerance = stat_tol) expect_equivalent(c(res_lj$p), 0.03544056, tolerance = p_tol) expect_equivalent(c(res_lj$statistic), 0.001687646, tolerance = stat_tol) expect_equivalent(c(res_gao$p), 0.03881585, tolerance = p_tol) expect_equivalent(c(res_gao$statistic), 0.001687646, tolerance = stat_tol) expect_equivalent(c(res_gal$p), 0.03375291, tolerance = p_tol) expect_equivalent(c(res_gal$statistic), 0.001687646, tolerance = stat_tol) expect_equivalent(c(res_che$p), 0.0371282, tolerance = p_tol) expect_equivalent(c(res_che$statistic), 0.001687646, tolerance = stat_tol) expect_equivalent(c(res_user$p), 0.03037762, tolerance = p_tol) expect_equivalent(c(res_user$statistic), 0.001687646, tolerance = stat_tol) }) test_that("bonferroni() works correctly with empirically-derived null distributions.", { set.seed(1234) res <- bonferroni(grid2ip.p, adjust = "empirical", R = grid2ip.ld) out <- capture.output(print(res)) expect_equivalent(c(res$p), 0.03229677, tolerance = p_tol * emp_sca) expect_equivalent(c(res$statistic), 0.001687646, tolerance = stat_tol * emp_sca) expect_equivalent(c(res$ci[1]), 0.02891875, tolerance = p_tol * emp_sca) expect_equivalent(c(res$ci[2]), 0.0359506, tolerance = p_tol * emp_sca) set.seed(1234) res <- bonferroni(grid2ip.p, adjust = "empirical", R = grid2ip.ld, size = 100000) out <- capture.output(print(res)) expect_equivalent(c(res$p), 0.03065969, tolerance = p_tol * emp_sca) expect_equivalent(c(res$statistic), 0.001687646, tolerance = stat_tol * emp_sca) expect_equivalent(c(res$ci[1]), 0.02959984, tolerance = p_tol * emp_sca) expect_equivalent(c(res$ci[2]), 0.03174688, tolerance = p_tol * emp_sca) set.seed(1234) res <- bonferroni(grid2ip.p, adjust = "empirical", R = grid2ip.ld, size = 1000000, batchsize = 1000) out <- capture.output(print(res)) expect_equivalent(c(res$p), 0.03024897, tolerance = p_tol * emp_sca) expect_equivalent(c(res$statistic), 0.001687646, tolerance = stat_tol * emp_sca) expect_equivalent(c(res$ci[1]), 0.02991414, tolerance = p_tol * emp_sca) expect_equivalent(c(res$ci[2]), 0.03058652, tolerance = p_tol * emp_sca) set.seed(1234) res <- bonferroni(grid2ip.p, adjust = "empirical", R = grid2ip.ld, size = c(1000, 10000, 100000), threshold = c(0.10, 0.01)) out <- capture.output(print(res)) expect_equivalent(c(res$p), 0.03139686, tolerance = p_tol * emp_sca) expect_equivalent(c(res$statistic), 0.001687646, tolerance = stat_tol * emp_sca) expect_equivalent(c(res$ci[1]), 0.02806613, tolerance = p_tol * emp_sca) expect_equivalent(c(res$ci[2]), 0.035004, tolerance = p_tol * emp_sca) })