if (!requireNamespace("spatstat.geom")) q("no") library("polyCub") ## bivariate, isotropic Gaussian density f <- function (s, mean, sd) dnorm(s[,1], mean=mean[1], sd=sd) * dnorm(s[,2], mean=mean[2], sd=sd) ## circular domain represented by a polygon r <- 5 center <- c(3,2) npoly <- 128 disc.owin <- spatstat.geom::disc(radius=r, centre=center, npoly=npoly) ## parameters for f m <- c(1,1) sd <- 3 ## target value of the integral over the _polygonal_ circle intExact <- 0.65844436 # taken from exact.Gauss cubature (below) stopIfDiff <- function(int, ...) if(!isTRUE(all.equal.numeric(intExact, int, ..., check.attributes = FALSE))) { if (is.call(cl <- substitute(int))) cl <- cl[1] stop(deparse(cl), " result not equal to reference value") } ## reproduce saved reference value if (identical(Sys.getenv("R_GPCLIBPERMIT"), "true") && requireNamespace("gpclib") && requireNamespace("mvtnorm")) stopIfDiff(polyCub.exact.Gauss(disc.owin, mean=m, Sigma=sd^2*diag(2)), tolerance = 1e-8) ## exact value of the integral over the _real_ circle stopIfDiff(circleCub.Gauss(center=center, r=r, mean=m, sd=sd), tolerance = 0.001) # agreement depends on 'npoly' ## polyCub.midpoint stopIfDiff(polyCub.midpoint(disc.owin, f, mean=m, sd=sd, dimyx=500), tolerance = 0.001) ## polyCub.SV intC <- polyCub.SV(disc.owin, f, mean=m, sd=sd, nGQ=3, engine="C") intR <- polyCub.SV(disc.owin, f, mean=m, sd=sd, nGQ=3, engine="R") stopifnot(all.equal(intC, intR)) stopIfDiff(intC, tolerance = 0.0001) ## polyCub.iso (using a numerical approximation of intrfr) stopIfDiff(polyCub.iso(disc.owin, f, mean=m, sd=sd, center=m))