test_that("fit_q_functions handles varying stage-action sets", { d <- sim_two_stage_multi_actions(n = 1e2) expect_error( pd <- policy_data(data = d, action = c("A_1", "A_2"), baseline = c("B", "BB"), covariates = list(L = c("L_1", "L_2"), C = c("C_1", "C_2")), utility = c("U_1", "U_2", "U_3")), NA ) p <- policy_def( c("yes", "no") ) expect_error( qfit <- fit_Q_functions(pd, policy_actions = p(pd), q_models = list(q_glm(), q_glm()), full_history = FALSE), NA ) expect_error( tmp <- predict(qfit, pd), NA ) tmp2 <- predict(qfit$stage_1$q_model$model, newdata = cbind(A = "yes", get_history(pd, stage = 1)$H[1,])) tmp2 <- tmp2 + get_history(pd, stage = 1)$U$U_bar[1] expect_equal(unname(tmp2), unname(unlist(tmp[1, "Q_yes"]))) tmp2 <- predict(qfit$stage_1$q_model$model, newdata = cbind(A = "no", get_history(pd, stage = 1)$H[1,])) tmp2 <- tmp2 + get_history(pd, stage = 1)$U$U_bar[1] expect_equal(unname(tmp2), unname(unlist(tmp[1, "Q_no"]))) }) test_that("q_models checks formula input", { d <- sim_two_stage(2e3, seed=1) pd <- policy_data(d, action = c("A_1", "A_2"), baseline = c("BB", "B"), covariates = list(L = c("L_1", "L_2"), C = c("C_1", "C_2")), utility = c("U_1", "U_2", "U_3")) p_dynamic <- policy_def( policy_functions = list(function(L_1) (L_1>0)*1, function(C_2) (C_2>0)*1), reuse = FALSE ) expect_error(policy_eval(policy_data = pd, policy = p_dynamic, q_models = q_glm(formula = Y~X))) expect_error(policy_eval(policy_data = pd, policy = p_dynamic, q_models = q_sl(formula = res~X))) expect_error(policy_eval(policy_data = pd, policy = p_dynamic, q_models = q_rf(formula = V_res~X * (.)))) expect_error(policy_eval(policy_data = pd, policy = p_dynamic, q_models = q_glmnet(formula = Y~X))) }) test_that("q_rf formats data correctly via the formula",{ d1 <- sim_single_stage(200, seed=1) d1$BB <- sample(c("group 1", "group & 2", "group & 3"), size = 200, replace = TRUE) pd1 <- policy_data(d1, action="A", covariates = list("Z", "B", "L", "BB"), utility="U") expect_error( pe <- policy_eval( policy_data = pd1, policy_learn = policy_learn(type = "ql", alpha = 0.05), g_models = g_glm(), g_full_history = FALSE, q_models = q_rf() ), NA ) }) test_that("q_sl formats data correctly via the formula",{ d1 <- sim_single_stage(200, seed=1) d1$BB <- sample(c("group 1", "group & 2", "group & 3"), size = 200, replace = TRUE) pd1 <- policy_data(d1, action="A", covariates = list("Z", "B", "L", "BB"), utility="U") expect_error( pe <- policy_eval( policy_data = pd1, policy_learn = policy_learn(type = "ql", alpha = 0.05), g_models = g_glm(), g_full_history = FALSE, q_models = q_sl() ), NA ) }) test_that("q_sl can find user-defined learners",{ library("polle") d <- sim_single_stage(200, seed=1) d$BB <- sample(c("group 1", "group & 2", "group & 3"), size = 200, replace = TRUE) pd <- policy_data(d, action="A", covariates = list("Z", "B", "L", "BB"), utility="U") p <- policy_def(1) env <- as.environment("package:SuperLearner") env <- new.env(parent = env) with(env,{ SL.test <- function (Y, X, newX, family, obsWeights, model = TRUE, ...){ if (is.matrix(X)) { X = as.data.frame(X) } fit.glm <- glm(Y ~ ., data = X, family = family, weights = obsWeights, model = model) if (is.matrix(newX)) { newX = as.data.frame(newX) } pred <- predict(fit.glm, newdata = newX, type = "response") fit <- list(object = fit.glm) class(fit) <- "SL.glm" # SL.test out <- list(pred = pred, fit = fit) return(out) } }) expect_error( qfun <- polle:::fit_Q_functions(pd, p(pd), q_sl(SL.library = "SL.test", env = env)), NA) }) test_that("q_glm and q_sl(SL.library('SL.glm')) are (almost) equivalent",{ library("SuperLearner") d1 <- sim_single_stage(200, seed=1) d1$A <- as.character(d1$A) d1$BB <- sample(c("group 1", "group_2", "G & 4"), size = nrow(d1), replace = TRUE) q1 <- q_glm(formula = ~.) q2 <- q_sl(formula = ~., SL.library = "SL.glm") q1 <- q1(AH = d1[,c("A", "B", "Z", "L", "BB")], V_res = d1$U) q2 <- q2(AH = d1[,c("A", "B", "Z", "L", "BB")], V_res = d1$U) # names are different expect_equal( unname(coef(q1$model)), unname(coef(q2$model$fitLibrary$SL.glm_All$object)) ) q1 <- q_glm(formula = ~.) q2 <- q_sl(formula = ~., SL.library = "SL.glm") d1$B <- as.character(d1$B) pd1 <- policy_data(d1, action = "A", covariates = c("Z", "L", "B", "BB"), utility = "U") pe1 <- policy_eval(policy_data = pd1, policy = policy_def(1), type = "or", q_models = q1) pe2 <- policy_eval(policy_data = pd1, policy = policy_def(1), type = "or", q_models = q2) # names are different expect_equal( unname(coef(pe1$q_functions$stage_1$q_model$glm_model)), unname(coef( pe2$q_functions$stage_1$q_model$fit$fitLibrary$SL.glm_All$object)) ) }) # missing data ------------------------------------------------------------ test_that("q_glm handles missing covariates", { d <- sim_two_stage(2e3, seed=1) d$C_1 <- NULL pd <- policy_data(d, action = c("A_1", "A_2"), baseline = c("BB", "B"), covariates = list(L = c("L_1", "L_2"), C = c(NA, "C_2")), # C_1 is missing utility = c("U_1", "U_2", "U_3")) p <- policy_def(1, reuse = TRUE) expect_error( policy_eval(policy_data = pd, policy = p), "NA/NaN/Inf in 'x'" ) expect_error( policy_eval(policy_data = pd, policy = p, type = "or", q_models = q_glm(~L)), NA ) expect_error( policy_eval(policy_data = pd, policy = p, type = "or", q_models = list(q_glm(~L), q_glm())), NA ) })