test_that("confint.pmrm_fit() proportional decline model", { fit <- fit_decline_proportional() out <- confint(fit, level = 0.87) estimates <- pmrm_estimates(fit, parameter = "theta", confidence = 0.87) expect_equal(rownames(out), as.character(estimates$arm)) expect_equal(as.numeric(out[, "6.5 %"]), estimates$lower) expect_equal(as.numeric(out[, "93.5 %"]), estimates$upper) }) test_that("confint.pmrm_fit() non-proportional slowing model", { fit <- fit_slowing_nonproportional() out <- confint(fit, level = 0.87) estimates <- pmrm_estimates(fit, parameter = "theta", confidence = 0.87) names <- paste(estimates$arm, estimates$visit, sep = ":") expect_equal(rownames(out), names) expect_equal(as.numeric(out[, "6.5 %"]), estimates$lower) expect_equal(as.numeric(out[, "93.5 %"]), estimates$upper) }) test_that("confint.pmrm_fit() non-proportional slowing model subset", { fit <- fit_slowing_nonproportional() out <- confint(fit, parm = c("arm_3:visit_4", "arm_2:visit_3"), level = 0.87) estimates <- pmrm_estimates(fit, parameter = "theta", confidence = 0.87)[ c(7L, 2L), ] names <- paste(estimates$arm, estimates$visit, sep = ":") expect_equal(rownames(out), names) expect_equal(as.numeric(out[, "6.5 %"]), estimates$lower) expect_equal(as.numeric(out[, "93.5 %"]), estimates$upper) })