test_that("cv.plsRglm + helpers on aze run and produce coherent objects", { skip_on_cran() data(aze, package = "plsRglm") set.seed(123) cvfit <- cv.plsRglm(y ~ ., data = aze, nt = 2, modele = "pls-glm-family", family = stats::binomial(), K = 3, NK = 1, random = TRUE, verbose = FALSE) expect_s3_class(cvfit, "cv.plsRglmmodel") s <- summary(cvfit) expect_s3_class(s, "summary.cv.plsRglmmodel") # cvtable should return the specialized table class tab <- cvtable(s, verbose = FALSE) expect_s3_class(tab, "table.summary.cv.plsRglmmodel") expect_true(length(tab) >= 1) # PRESS and MissClassed summaries must compute pr <- kfolds2Press(cvfit) expect_true(is.list(pr) || is.numeric(pr)) mc <- kfolds2Mclassed(cvfit) expect_true(is.list(mc) || is.numeric(mc)) })