expect_traces <- function(p, n.traces, name){
stopifnot(is.numeric(n.traces))
L <- expect_doppelganger_built(p, paste0("plotly-", name))
expect_equivalent(length(L$data), n.traces)
L
}
# expect 2 plotly graphs to have the same traces
expect_same_data <- function(p1, p2) {
if (!is.plotly(p1) || !is.plotly(p2)) {
stop("Both arguments must be plotly objects", call. = FALSE)
}
d1 <- plotly_build(p1)$x$data
d2 <- plotly_build(p2)$x$data
if (length(d1) != length(d2)) {
stop("Number of traces is different.", call. = FALSE)
}
# for each trace, align the names (since ordering doesn't matter)
d1 <- Map(function(x, y) structure(x[names(y)], class = oldClass(x)), d1, d2)
expect_identical(d1, d2)
}
test_that("vector values with repeated values are returned verbatim", {
p <- plot_ly(x = c(1, 2), y = c(1, 1))
l <- plotly_build(p)$x
expect_equivalent(l$data[[1]]$x, c(1, 2))
expect_equivalent(l$data[[1]]$y, c(1, 1))
})
test_that("plot_ly defaults to scatterplot", {
p1 <- plot_ly(mtcars, x = ~wt, y = ~mpg)
p2 <- plot_ly(mtcars, x = ~wt, y = ~mpg) %>% add_markers()
expect_same_data(p1, p2)
})
test_that("Variable mappings return same result regardless of where they appear", {
p1 <- plot_ly(mtcars, x = ~wt, y = ~mpg, size = ~disp)
p2 <- plot_ly(mtcars, x = ~wt, y = ~mpg) %>% add_markers(size = ~disp)
expect_same_data(p1, p2)
p1 <- plot_ly(mtcars, x = ~wt, y = ~mpg, color = ~disp)
p2 <- plot_ly(mtcars, x = ~wt, y = ~mpg) %>% add_markers(color = ~disp)
expect_same_data(p1, p2)
p1 <- plot_ly(mtcars, x = ~wt, y = ~mpg, symbol = ~factor(am))
p2 <- plot_ly(mtcars, x = ~wt, y = ~mpg) %>% add_markers(symbol = ~factor(am))
expect_same_data(p1, p2)
p1 <- plot_ly(mtcars, x = ~wt, y = ~mpg, linetype = ~factor(am))
p2 <- plot_ly(mtcars, x = ~wt, y = ~mpg) %>% add_markers(linetype = ~factor(am))
expect_message(plotly_build(p1), "Adding lines to mode")
expect_message(plotly_build(p2), "Adding lines to mode")
expect_same_data(p1, p2)
})
test_that("plot_ly() handles a simple scatterplot", {
d <- palmerpenguins::penguins %>%
filter(!is.na(bill_length_mm))
p <- plot_ly(data = d,
x = ~bill_length_mm, y = ~bill_depth_mm, mode = "markers")
l <- expect_traces(p, 1, "scatterplot")
expect_equivalent(l$data[[1]]$mode, "markers")
expect_equivalent(l$data[[1]]$x, na.omit(palmerpenguins::penguins$bill_length_mm))
expect_equivalent(l$data[[1]]$y, na.omit(palmerpenguins::penguins$bill_depth_mm))
expect_true(l$layout$xaxis$title == "bill_length_mm")
expect_true(l$layout$yaxis$title == "bill_depth_mm")
expect_true(l$layout$xaxis$automargin)
expect_true(l$layout$yaxis$automargin)
})
test_that("type inference + add_data + layering works as expected", {
p <- plot_ly(palmerpenguins::penguins, x = ~species) %>%
add_trace(opacity = 0.3) %>%
add_data(palmerpenguins::penguins[sample(nrow(palmerpenguins::penguins), 10), ]) %>%
add_trace() %>%
layout(barmode = "overlay")
l <- expect_traces(p, 2, "bar-inference")
types <- unique(unlist(lapply(l$data, "[[", "type")))
expect_equivalent(types, "histogram")
expect_equivalent(l$data[[1]]$opacity, 0.3)
expect_equivalent(l$layout$barmode, "overlay")
expect_true(length(l$data[[1]]$x) > length(l$data[[2]]$x))
})
test_that("x/y/z properties have a class of AsIs", {
p <- plot_ly(x = 1, y = 1, z = 1, type = "scatter3d")
l <- expect_traces(p, 1, "box-data-array")
tr <- l$data[[1]]
expect_true(inherits(tr$x, "AsIs"))
expect_true(inherits(tr$y, "AsIs"))
expect_true(inherits(tr$z, "AsIs"))
})
test_that("grouping within multiples traces works", {
g <- expand.grid(visit = 1:2, id = 1:3, cohort = c("A", "B"))
g$response <- rnorm(nrow(g))
d <- group_by(g, id)
p <- plot_ly(d, x = ~visit, y = ~response, color = ~cohort, colors = c("red", "blue"))
l <- expect_traces(add_lines(p), 2, "group-within-trace")
expect_equivalent(l$data[[1]]$x, c(1, 2, NA, 1, 2, NA, 1, 2))
expect_equivalent(l$data[[2]]$x, c(1, 2, NA, 1, 2, NA, 1, 2))
expect_true(l$data[[1]]$line$color == toRGB("red"))
expect_true(l$data[[2]]$line$color == toRGB("blue"))
})
test_that("Alpha can be applied to both constant and scaled colors", {
p <- plot_ly(x = rnorm(100), y = rnorm(100), color = ~rnorm(100))
p <- add_markers(p, alpha = 0.05)
p <- add_lines(p, x = -1:1, y = -1:1, color = I("red"), alpha = 0.4)
# one trace for the colorbar
l <- expect_traces(p, 3, "alpha-blending")
# verify the correct alpha for the points
rgbs <- l$data[[1]]$marker$colorscale[, 2]
alphas <- unique(sub("\\)", "", sapply(strsplit(rgbs, ","), "[[", 4)))
expect_equivalent("0.05", alphas)
# verify the correct alpha for the lines
rgb <- l$data[[2]]$line$color
alpha <- sub("\\)", "", sapply(strsplit(rgb, ","), "[[", 4))
expect_equivalent("0.4", alpha)
})
test_that("Alpha still applies when no color is applied", {
p <- plot_ly(mtcars, x = ~mpg, y = ~disp, alpha = 0.5)
l <- expect_traces(p, 1, "alpha-no-color")
# verify the correct alpha for the points
expect_true(l$data[[1]]$marker$color == "rgba(31,119,180,0.5)")
})
test_that("Factors correctly mapped to a positional axis", {
x <- factor(c(1, 2, 4, 8, 16, 32))
p <- plot_ly(x = x, y = c(1, 2, 3, 4, 5, 6)) %>% add_markers()
l <- expect_traces(p, 1, "factor-axis")
expect_equivalent(l$layout$xaxis$type, "category")
expect_equivalent(l$layout$xaxis$categoryorder, "array")
expect_equivalent(l$layout$xaxis$categoryarray, levels(x))
})
test_that("Character strings correctly mapped to a positional axis", {
# scramble alphabet order
letters <- LETTERS[as.numeric(sort(as.character(1:26)))]
p <- plot_ly(x = letters, y = seq_along(letters)) %>%
add_bars(color = rep(c("a1", "a2"), length.out = 26))
l <- expect_warning(expect_traces(p, 2, "character-axis"),
regexp = "minimal value for n is 3")
expect_equivalent(l$layout$xaxis$type, "category")
expect_equivalent(l$layout$xaxis$categoryorder, "array")
expect_equivalent(l$layout$xaxis$categoryarray, LETTERS)
})
test_that("Histogram", {
p <- plot_ly(x = rnorm(100))
l <- expect_traces(p, 1, "histogram")
o <- unlist(lapply(l$data, "[[", "orientation"))
types <- unlist(lapply(l$data, "[[", "type"))
expect_null(o)
expect_equivalent(unique(types), "histogram")
})
test_that("Discrete variable mapped to x creates horizontal bar chart", {
p <- plot_ly(y = rnorm(100))
l <- expect_traces(p, 1, "histogram-vert")
o <- unlist(lapply(l$data, "[[", "orientation"))
types <- unlist(lapply(l$data, "[[", "type"))
expect_equivalent(unique(o), "h")
expect_equivalent(unique(types), "histogram")
})
test_that("Can avoid inheriting attributes", {
p <- plot_ly(mtcars, x = ~wt, y = ~mpg, color = I("red")) %>%
add_histogram(x = ~factor(vs), inherit = FALSE)
l <- expect_traces(p, 1, "inherit-FALSE")
expect_equivalent(l$data[[1]][["type"]], "histogram")
expect_equivalent(l$data[[1]][["x"]], factor(mtcars[["vs"]]))
expect_null(l$data[[1]][["y"]])
expect_true(l$data[[1]][["marker"]][["color"]] != toRGB("red"))
})
test_that("Complex example works", {
# note how median (the variable) doesn't exist in the second layer
p <- txhousing %>%
plot_ly(x = ~date, y = ~median) %>%
group_by(city) %>%
add_lines(alpha = 0.2, name = "Texan Cities", hoverinfo = "none") %>%
group_by(date) %>%
summarise(
q1 = quantile(median, 0.25, na.rm = TRUE),
m = median(median, na.rm = TRUE),
q3 = quantile(median, 0.75, na.rm = TRUE)
) %>%
add_lines(y = ~m, color = I("red"), name = "median") %>%
add_ribbons(ymin = ~q1, ymax = ~q3, color = I("red"), name = "IQR")
l <- expect_traces(p, 3, "time-series-summary")
})
test_that("span/size controls errorbar thickness/width", {
p <- plot_ly(x = 1:10, y = 1:10, error_x = list(value = 3), error_y = list(value = 2), span = I(5), size = I(10), stroke = I("black"), color = I("red")) %>%
plotly_build()
expect_doppelganger_built(p, "errorbar.width")
d <- p$x$data
expect_length(d, 1)
expect_true(d[[1]]$error_x$value == 3)
expect_true(d[[1]]$error_x$thickness == 5)
expect_true(d[[1]]$error_x$width == 10)
expect_true(d[[1]]$error_x$color == toRGB("red"))
expect_true(d[[1]]$error_y$value == 2)
expect_true(d[[1]]$error_y$thickness == 5)
expect_true(d[[1]]$error_y$width == 10)
expect_true(d[[1]]$error_y$color == toRGB("red"))
})
test_that("Vector of redundant text is reduced to string when hoveron=fills", {
# see https://github.com/ropensci/plotly/issues/1233
d <- data.frame(
AA = c(2,3,3,2, NA, 6,7,7,6, NA),
BB = c(2,2,3,2, NA, 6,6,7,6, NA),
CC = c(rep('abc', 5), rep('xyz', 5)),
LL = c(rep('A', 5), rep('B', 5))
)
p <- plot_ly(d) %>%
add_trace(x = ~AA,
y = ~BB,
text = ~paste('
Example of custom hover text
', LL, '
', CC, '
.'),
split = ~LL,
mode = "lines",
fill = "toself",
hoveron = 'fills',
type = "scatter",
color = I(c(rep(toRGB("black", 1), 5),
rep(toRGB("red", 1), 5)))
)
b <- plotly_build(p)
d <- b$x$data
expect_length(d, 2)
expect_true(d[[1]]$line$color == toRGB("black"))
expect_true(d[[1]]$fillcolor == toRGB("black", 0.5))
expect_true(d[[2]]$line$color == toRGB("red"))
expect_true(d[[2]]$fillcolor == toRGB("red", 0.5))
expect_true(
d[[1]]$text == '
Example of custom hover text
A
abc
.'
)
expect_true(
d[[2]]$text == '
Example of custom hover text
B
xyz
.'
)
})
test_that("Can map data to legendgroup", {
d <- data.frame(
x = 1:100,
y = runif(100),
group = letters[1:5]
)
l <- plot_ly(data = d, x = ~x, y = ~y) %>%
add_bars(color = ~group, legendgroup = ~group) %>%
add_markers(color = ~group, legendgroup = ~group) %>%
plotly_build()
expect_length(l$x$data, 10)
markers <- compact(lapply(l$x$data, function(tr) if (tr$type == "scatter") tr))
for (i in seq_along(markers)) {
expect_length(markers[[i]]$legendgroup, 1)
expect_true(markers[[i]]$legendgroup == letters[[i]])
}
bars <- compact(lapply(l$x$data, function(tr) if (tr$type == "bar") tr))
for (i in seq_along(bars)) {
expect_length(bars[[i]]$legendgroup, 1)
expect_true(bars[[i]]$legendgroup == letters[[i]])
}
})
test_that("Axis domains aren't supplied if layout.grid exists", {
p <- plot_ly(type = 'scatter',mode = 'lines', y = c(5,1,3), xaxis = 'x', yaxis = 'y') %>%
add_trace(y = c(2,1,5), xaxis = 'x2', yaxis = 'y2') %>%
add_trace(y = c(2,1,5), xaxis = 'x3', yaxis = 'y3')%>%
add_trace(y = c(2,1,5), xaxis = 'x4', yaxis = 'y4')%>%
add_trace(y = c(2,1,5), xaxis = 'x5', yaxis = 'y5')%>%
add_trace(y = c(2,1,5), xaxis = 'x6', yaxis = 'y6')%>%
layout(grid = list(rows = 2, columns = 3, pattern ='independent'))
l <- expect_doppelganger_built(p, "layout-grid")
expect_null(l$layout$xaxis$domain)
expect_null(l$layout$yaxis$domain)
})
test_that("Informative deprecation message for titlefont", {
expect_warning(config(plot_ly(), cloud = TRUE), "cloud")
})
test_that("Informative warning for invalid config attr", {
p <- config(plot_ly(), foobar = TRUE)
expect_warning(plotly_build(p), "foobar")
})
test_that("Informative deprecation message for titlefont", {
p <- layout(plot_ly(), title = "A title", titlefont = list(size = 30))
expect_warning(plotly_build(p), "titlefont")
})
test_that("toWebGL() shouldn't complain if it's already webgl", {
p <- plot_ly(x = 1, y = 1) %>%
add_trace(type = "scattergl", mode = "markers") %>%
toWebGL()
expect_silent(plotly_build(p))
})
test_that("Line breaks are properly translated (R -> HTML)", {
# create target labels
suffix <- "\n\n(third line)\n(fourth line)"
d <- palmerpenguins::penguins %>%
filter(!is.na(bill_length_mm))
target_labels <- d$species %>%
unique() %>%
sort() %>%
paste0(suffix) %>%
gsub(pattern = "\n",
replacement = br(),
x = .,
fixed = TRUE)
# test factor column
levels(d$species) <- paste0(levels(d$species), suffix)
p1 <- d %>% plot_ly(x = ~bill_length_mm,
y = ~species)
expect_equivalent(plotly_build(p1)[["x"]][["layout"]][["yaxis"]][["categoryarray"]],
target_labels)
# test character column
p2 <- d %>%
dplyr::mutate(species = as.character(species)) %>%
plot_ly(x = ~bill_length_mm,
y = ~species)
expect_equivalent(plotly_build(p2)[["x"]][["layout"]][["yaxis"]][["categoryarray"]],
target_labels)
})
test_that("group_by() on a plotly object doesn't produce warning", {
expect_warning(group_by(plot_ly(txhousing), city), NA)
})