R version 4.5.0 RC (2025-04-04 r88113 ucrt) -- "How About a Twenty-Six" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(plasma) > fls <- try(loadESCAdata()) > if (inherits(fls, "try-error")) { + stop("Unable to load data from remote server.") + } > ls() [1] "fls" > ## prepare MultiOmics > MO <- with(plasmaEnv, prepareMultiOmics(assemble, Outcome)) > MO <- MO[c("ClinicalBin", "ClinicalCont", "RPPA"),] > summary(MO) Datasets: ClinicalBin ClinicalCont RPPA [1,] 53 6 192 [2,] 185 185 185 Outcomes: patient_id vital_status days_to_death days_to_last_followup a3i8 : 1 alive:108 Min. : 9.0 Min. : 4.0 a3ql : 1 dead : 77 1st Qu.: 180.0 1st Qu.: 336.5 a3y9 : 1 Median : 351.0 Median : 402.5 a3ya : 1 Mean : 495.2 Mean : 570.1 a3yb : 1 3rd Qu.: 650.0 3rd Qu.: 696.8 a3yc : 1 Max. :2532.0 Max. :3714.0 (Other):179 NA's :108 NA's :77 Days Min. : 4.0 1st Qu.: 232.0 Median : 400.0 Mean : 538.9 3rd Qu.: 681.0 Max. :3714.0 > ## test complete cox models > set.seed(12345) > train <- rep(FALSE, 185) > train[sample(185, 113)] <- TRUE > MO2 <- MO[, train] > summary(MO2) Datasets: ClinicalBin ClinicalCont RPPA [1,] 53 6 192 [2,] 113 113 113 Outcomes: patient_id vital_status days_to_death days_to_last_followup a3ql : 1 alive:64 Min. : 9.0 Min. : 11.0 a3y9 : 1 dead :49 1st Qu.: 157.0 1st Qu.: 318.8 a3ya : 1 Median : 351.0 Median : 404.5 a3yc : 1 Mean : 494.6 Mean : 572.7 a43c : 1 3rd Qu.: 600.0 3rd Qu.: 652.8 a43h : 1 Max. :2532.0 Max. :3714.0 (Other):107 NA's :64 NA's :49 Days Min. : 9.0 1st Qu.: 238.0 Median : 400.0 Mean : 538.8 3rd Qu.: 632.0 Max. :3714.0 > bigfit <- fitCoxModels(MO2, timevar = "Days", + eventvar = "vital_status", + eventvalue = "dead") Fitting model with ClinicalBin ____************************************************____ ____There are some NAs in X but not in Y____ ____Component____ 1 ____ ____Component____ 2 ____ ____Component____ 3 ____ ____Predicting X with NA in X and not in Y____ ****________________________________________________**** Fitting model with ClinicalCont ____************************************************____ ____There are some NAs in X but not in Y____ ____Component____ 1 ____ ____Component____ 2 ____ ____Predicting X with NA in X and not in Y____ ****________________________________________________**** Fitting model with RPPA ____************************************************____ ____Component____ 1 ____ ____Component____ 2 ____ ____Component____ 3 ____ ____Predicting X without NA neither in X nor in Y____ ****________________________________________________**** Warning messages: 1: In coxph.fit(X, Y, istrat, offset, init, control, weights = weights, : Loglik converged before variable 1 ; coefficient may be infinite. 2: In coxph.fit(X, Y, istrat, offset, init, control, weights = weights, : Loglik converged before variable 1,2 ; coefficient may be infinite. 3: In coxph.fit(X, Y, istrat, offset, init, control, weights = weights, : Loglik converged before variable 1,2,3 ; coefficient may be infinite. > ## test core methods > class(bigfit) [1] "MultiplePLSCoxModels" attr(,"package") [1] "plasma" > summary(bigfit) An object containing MultiplePLSCoxModels based on: [1] "ClinicalBin" "ClinicalCont" "RPPA" > getSizes(bigfit) NT cNT p.value ClinicalBin 3 3 5.363395e-06 ClinicalCont 2 2 5.056035e-01 RPPA 3 3 6.993030e-11 > plot(bigfit) > preds <- predict(bigfit) > ## make sure we can predict on new data > testobj <- MO[, !train] > > predsB <- predict(bigfit, newdata = testobj) > predsR <- predict(bigfit, newdata = testobj, type = "risk") > predsS <- predict(bigfit, newdata = testobj, type = "split") > > proc.time() user system elapsed 9.76 1.21 12.34