library(plasma) # Repeat basic stuff from first test fls <- try(loadESCAdata()) if (inherits(fls, "try-error")) { stop("Unable to load data from remote server.") } ls() MO <- with(plasmaEnv, prepareMultiOmics(assemble, Outcome)) train <- rep(c(TRUE, FALSE), times = c(112, 185-112)) MO2 <- MO[, train] ## Fit a survival model on a single data set on the MultiOmics object fitted <- fitSingleModel(MO2, "ClinicalBin", "Days", "vital_status", "dead") summary(fitted) p <- predict(fitted) summary(p) plot(fitted, xlab = "Time (Days)", legloc = "topright", main = "Training Data") ## Make sure we can predict on new data testobj <- MO[, !train] summary(testobj) ## How do we get rid of the "Missing value" information? pre <- predict(fitted, newdata = testobj) prer <- predict(fitted, newdata = testobj, type = "risk") pres <- predict(fitted, newdata = testobj, type = "split") pairs(cbind(pre, prer, pres)) ## Things that should fail: p <- try( predict(fitted, "risk") ) p <- try( predict(fitted, type = "riak") )