library(testthat) context("demo8") library(penaltyLearning) data(demo8, package="penaltyLearning") set.seed(1) fit <- with(demo8, IntervalRegressionCV( feature.mat, target.mat, min.observations=8)) test_that("CV model prints weights", { expect_output({ print(fit) }, "IntervalRegression model for margin") }) test_that("CV model coef ncol 1", { expect_equal(ncol(coef(fit)), 1) }) test_that("valid CV model for 8 train data with NA features", { pred.vec <- fit$predict(demo8$feature.mat) expect_equal(length(pred.vec), nrow(demo8$feature.mat)) expect_true(is.numeric(pred.vec)) expect_true(all(is.finite(pred.vec))) }) test_that("plot(CV) returns ggplot", { gg <- plot(fit) expect_is(gg, "ggplot") }) fit <- with(demo8, IntervalRegressionRegularized( feature.mat, target.mat)) test_that("Regularized model contains plots and data", { expect_is(plot(fit), "ggplot") expect_is(fit$plot.residual, "ggplot") expect_is(fit$plot.weight, "ggplot") expect_is(fit$plot.residual.data, "data.table") expect_is(fit$plot.weight.data, "data.table") }) test_that("Regularized model coef ncol", { expect_equal(ncol(coef(fit)), ncol(fit$pred.param.mat)) }) test_that("Regularized model prints summary", { expect_output({ print(fit) }, "IntervalRegression models") })