#* there are lots of options and until one obviously breaks I am not going to try to test all of them. test_that("Logistic brms model pipeline", { skip_if_not_installed("brms") skip_if_not_installed("cmdstanr") skip_on_cran() set.seed(123) simdf <- growthSim( "logistic", n = 20, t = 25, params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5)) ) ss <- growthSS( model = "logistic", form = y ~ time | id / group, sigma = "gam", list("A" = 130, "B" = 10, "C" = 3), df = simdf, type = "brms" ) expect_equal(ss$prior$nlpar, c("", "", "A", "B", "C")) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 500, chains = 1, cores = 1) expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) expect_s3_class(plot, "ggplot") plot1.5 <- growthPlot(fit = fit, form = y ~ time | group, groups = "a", df = ss$df) expect_s3_class(plot1.5, "ggplot") plot2 <- brmViolin(fit, hyp = "num/denom>1.05", compareX = "a", againstY = "b", returnData = TRUE ) expect_s3_class(plot2$plot, "ggplot") plot2.5 <- brmViolin(fit, hyp = "num/denom>1.05", facet = "group", returnData = FALSE ) d3 <- brmViolin(fit, hyp = "num/denom>1.05", compareX = NULL, againstY = NULL, facet = "group", returnData = FALSE ) expect_s3_class(plot2.5, "ggplot") expect_equal(nrow(d3), 3000) ss2 <- growthSS( model = "gompertz", form = y ~ time | id / group, sigma = "logistic", list("A" = 130, "B" = 10, "C" = 1, "sigmaA" = 20, "sigmaB" = 10, "sigmaC" = 2), df = simdf, type = "brms" ) fit2 <- fitGrowth(ss2, backend = "cmdstanr", iter = 500, chains = 1, cores = 1, sample_prior = "only") expect_message( cd <- combineDraws(fit, fit2) ) expect_equal(dim(cd), c(250, 21)) cd <- combineDraws(fit, fit) expect_equal(dim(cd), c(250, 16)) fit_df <- as.data.frame(fit) fit_df <- fit_df[, grepl("^b_", colnames(fit_df))] cd <- combineDraws(fit, fit_df) expect_equal(dim(cd), c(250, 16)) expect_error(combineDraws(fit, list())) fit2 <- fit1 <- fit fit1$data <- fit1$data[fit1$data$time < 10, ] plot3 <- distributionPlot(list(fit1, fit2), form = ss$pcvrForm, d = ss$df, priors = list( "A" = rlnorm(500, log(130), 0.25), "B" = rlnorm(500, log(12), 0.25), "C" = rlnorm(500, log(3), 0.25) ) ) expect_s3_class(plot3, "ggplot") plots4 <- distributionPlot( list(fit1, fit2), form = ss$pcvrForm, d = ss$df, priors = NULL, patch = FALSE ) test <- testGrowth(ss, fit, "A_groupa > A_groupb") expect_s3_class(test, "brmshypothesis") ss <- growthSS( model = "logistic", form = y ~ time | id / group, sigma = "logistic", list( "A" = 130, "B" = 10, "C" = 3, "sigmaA" = 20, "sigmaB" = 10, "sigmaC" = 3 ), df = simdf, type = "brms" ) pp1 <- plotPrior(ss) expect_s3_class(pp1, "ggplot") ss2 <- ss ss2$prior <- data.frame() expect_error( err <- plotPrior(ss2) ) pp2 <- plotPrior( priors = list("A" = c(100, 130), "B" = c(10, 8), "C" = c(0.2, 0.1)), type = "logistic", n = 200, t = 25 ) expect_s3_class(pp2$simulated, "ggplot") pp3 <- plotPrior( priors = list("A" = c(100, 130), "B" = c(0.08, 0.1)), type = "monomolecular", n = 200, t = 25 ) expect_s3_class(pp3$simulated, "ggplot") pp4 <- plotPrior( priors = list("A" = c(101, 11), "B" = c(0.12, 0.15)), type = "exponential", n = 200, t = 25 ) expect_s3_class(pp4$simulated, "ggplot") suppressWarnings(barg_output1 <- barg(fit, ss)) fit_2 <- fit fit_list <- list(fit, fit_2) x <- suppressWarnings(barg(fit_list, list(ss, ss))) }) test_that("distPlot works with many models", { skip_if_not_installed("brms") skip_if_not_installed("cmdstanr") skip_on_cran() load(url("https://raw.githubusercontent.com/joshqsumner/pcvrTestData/main/brmsFits.rdata")) fits <- list(fit_3, fit_15) form <- y ~ time | id / group priors <- list( "phi1" = rlnorm(2000, log(130), 0.25), "phi2" = rlnorm(2000, log(12), 0.25), "phi3" = rlnorm(2000, log(3), 0.25) ) from3to25 <- list( fit_3, fit_5, fit_7, fit_9, fit_11, fit_13, fit_15, fit_17, fit_19, fit_21, fit_23, fit_25 ) plot <- distributionPlot( fits = from3to25, form = y ~ time | id / group, params = c("A", "B", "C"), d = simdf, priors = priors ) expect_s3_class(plot, "ggplot") }) test_that("brms model warns about priors", { skip_if_not_installed("brms") skip_if_not_installed("cmdstanr") skip_on_cran() set.seed(123) simdf <- growthSim( "linear", n = 20, t = 25, params = list("A" = c(1, 1.1)) ) ss <- growthSS( model = "linear", form = y ~ time | id / group, sigma = "spline", df = simdf, type = "brms" ) ss <- ss[-which(names(ss) == "prior")] expect_warning(fitGrowth(ss, backend = "cmdstanr", iter = 100, chains = 1, cores = 1 )) }) test_that("Hierarchical Model Works", { skip_if_not_installed("brms") skip_if_not_installed("cmdstanr") skip_on_cran() set.seed(123) simdf <- growthSim( "logistic", n = 20, t = 25, params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5)) ) simdf$covar <- rnorm(nrow(simdf), 10, 1) ss <- growthSS( model = "logistic", form = y ~ time + covar | id / group, sigma = "logistic", list( "AI" = 100, "AA" = 5, "B" = 10, "C" = 3, "sigmaA" = 10, "sigmaB" = 10, "sigmaC" = 3 ), df = simdf, type = "brms", hierarchy = list("A" = "int_linear") ) lapply(ss, head) fit <- fitGrowth(ss, iter = 600, cores = 1, chains = 1, backend = "cmdstanr") expect_s3_class(fit, "brmsfit") p <- growthPlot(fit, ss$pcvrForm, df = ss$df) expect_s3_class(p, "ggplot") }) test_that("Changepoint model can be specified", { skip_if_not_installed("brms") skip_if_not_installed("cmdstanr") set.seed(123) noise <- do.call(rbind, lapply(1:30, function(i) { chngpt <- c(20, 21) rbind( data.frame( id = paste0("id_", i), time = 1:chngpt[1], group = "a", y = c(runif(chngpt[1] - 1, 0, 20), rnorm(1, 5, 1)) ), data.frame( id = paste0("id_", i), time = 1:chngpt[2], group = "b", y = c(runif(chngpt[2] - 1, 0, 20), rnorm(1, 5, 1)) ) ) })) noise2 <- do.call(rbind, lapply(1:30, function(i) { start1 <- max(noise[noise$id == paste0("id_", i) & noise$group == "a", "time"]) start2 <- max(noise[noise$id == paste0("id_", i) & noise$group == "b", "time"]) rbind( data.frame( id = paste0("id_", i), time = start1:40, group = "a", y = c(runif(length(start1:40), 15, 50)) ), data.frame( id = paste0("id_", i), time = start2:40, group = "b", y = c(runif(length(start2:40), 15, 50)) ) ) })) simdf <- rbind(noise, noise2) ss <- growthSS( model = "int_linear + decay linear", form = y ~ time | id / group, sigma = "int + gam", list( "I" = 1, "linear1A" = 10, "fixedChangePoint1" = 20, "linear2A" = 2, "sigmaint1" = 1, "sigmachangePoint1" = 25 ), df = simdf, type = "brms" ) expect_equal(ss$prior$nlpar, c("", "linear1A", "linear2A", "I", "sigmaint1", "sigmachangePoint1")) ss <- growthSS( model = "int_linear + decay linear", form = y ~ time | id / group, sigma = "int + gam", list( "I" = 1, "linear1A" = 10, "fixedChangePoint1" = 20, "linear2A" = 2, "sigmaint1" = 1, "sigmachangePoint1" = 25 ), df = simdf[1:10, ], type = "brms" ) expect_equal(ss$prior$nlpar, c("", "linear1A", "linear2A", "I", "sigmaint1", "sigmachangePoint1")) }) test_that("weibull survival", { skip_if_not_installed("brms") skip_if_not_installed("cmdstanr") skip_on_cran() set.seed(123) model <- "survival" form <- y > 100 ~ time | id / group df <- growthSim( "logistic", n = 20, t = 25, params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5)) ) prior <- c(0, 5) ss <- growthSS(model = model, form = form, df = df, start = prior) expect_equal(ss$prior$coef, c("groupa", "groupb")) fit <- fitGrowth(ss, iter = 600, cores = 1, chains = 1, backend = "cmdstanr") expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit, form = ss$pcvrForm, df = ss$df) expect_s3_class(plot, "ggplot") test <- testGrowth(ss, fit, "groupa > groupb") expect_s3_class(test, "brmshypothesis") }) test_that("binomial survival", { skip_if_not_installed("brms") skip_if_not_installed("cmdstanr") skip_on_cran() set.seed(123) model <- "survival binomial" form <- y > 100 ~ time | id / group df <- growthSim( "logistic", n = 20, t = 25, params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5)) ) prior <- c(0, 5) ss <- growthSS(model = model, form = form, df = df, start = prior) fit <- fitGrowth(ss, iter = 600, cores = 1, chains = 1, backend = "cmdstanr") expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit, form = ss$pcvrForm, df = ss$df) expect_s3_class(plot, "ggplot") }) test_that(".brmSurvSS options all work", { set.seed(123) df <- growthSim("logistic", n = 20, t = 25, params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5)) ) surv <- .survModelParser("survival weibull") ss <- suppressMessages( .brmsSurvSS( model = surv$model, form = y > 100 ~ time | id / group, df = df, priors = c(0, 5) ) ) expect_equal(names(ss), c("df", "family", "formula", "prior", "initfun", "pcvrForm")) ss2 <- suppressMessages( .brmsSurvSS( model = surv$model, form = y > 100 ~ time | id / group, df = df, priors = NULL ) ) expect_equal(names(ss2), c("df", "family", "formula", "prior", "initfun", "pcvrForm")) df2 <- df df2$censor <- 0 # dummy data df2$event <- 1 # dummy data df2$n_eligible <- 100 # dummy data df2$n_events <- 5 # dummy data ss3 <- suppressMessages( .brmsSurvSS( model = surv$model, form = y > 100 ~ time | id / group, df = df2, priors = NULL ) ) expect_equal(names(ss3), c("df", "family", "formula", "prior", "initfun", "pcvrForm")) ss4 <- suppressMessages( .brmsSurvSS( model = surv$model, form = y > 100 ~ time | id / group, df = df2[df2$group == "a", ], priors = NULL ) ) expect_equal(names(ss4), c("df", "family", "formula", "prior", "initfun", "pcvrForm")) surv <- .survModelParser("survival binomial") ss <- suppressMessages( .brmsSurvSS( model = surv$model, form = y > 100 ~ time | id / group, df = df, priors = c(0, 5) ) ) expect_equal(names(ss), c("df", "family", "formula", "prior", "initfun", "pcvrForm")) ss2 <- suppressMessages( .brmsSurvSS( model = surv$model, form = y > 100 ~ time | id / group, df = df, priors = NULL ) ) expect_equal(names(ss2), c("df", "family", "formula", "prior", "initfun", "pcvrForm")) ss3 <- suppressMessages( .brmsSurvSS( model = surv$model, form = y > 100 ~ time | id / group, df = df2, priors = NULL ) ) expect_equal(names(ss3), c("df", "family", "formula", "prior", "initfun", "pcvrForm")) ss4 <- suppressMessages( .brmsSurvSS( model = surv$model, form = y > 100 ~ time | id / group, df = df2[df2$group == "a", ], priors = NULL ) ) expect_equal(names(ss4), c("df", "family", "formula", "prior", "initfun", "pcvrForm")) }) #* *********************************** #* ***** `Not Run on the remote` ***** #* *********************************** if (file.exists("/home/josh/Desktop/") && interactive()) { # only run locally, don't test for each R-CMD Check test_that("Gompertz brms model pipeline", { set.seed(123) simdf <- growthSim("gompertz", n = 20, t = 25, params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(0.25, 0.25)) ) ss <- growthSS( model = "gompertz", form = y ~ time | id / group, sigma = "int", list("A" = 130, "B" = 10, "C" = 1), df = simdf, type = "brms" ) expect_equal(ss$prior$nlpar, c("", "A", "B", "C")) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 500, chains = 1, cores = 1) expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) ggsave("~/scripts/fahlgren_lab/labMeetings/gompertz_fitGrowth.png", plot, width = 10, height = 6, dpi = 300, bg = "#ffffff" ) expect_s3_class(plot, "ggplot") }) test_that("Monomolecular brms model pipeline", { set.seed(123) simdf <- growthSim("monomolecular", n = 20, t = 25, params = list("A" = c(200, 160), "B" = c(0.01, 0.08)) ) ss <- growthSS( model = "monomolecular", form = y ~ time | id / group, sigma = "int", list("A" = 130, "B" = 1), df = simdf, type = "brms" ) expect_equal(ss$prior$nlpar, c("", "A", "B")) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 500, chains = 1, cores = 1) expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) ggsave("~/scripts/fahlgren_lab/labMeetings/monomolecular_fitGrowth.png", plot, width = 10, height = 6, dpi = 300, bg = "#ffffff" ) expect_s3_class(plot, "ggplot") }) test_that("Exponential brms model pipeline", { set.seed(123) simdf <- growthSim("exponential", n = 20, t = 25, params = list("A" = c(15, 12), "B" = c(0.1, 0.085)) ) ss <- growthSS( model = "exponential", form = y ~ time | id / group, sigma = "int", list("A" = 10, "B" = 1), df = simdf, type = "brms" ) expect_equal(ss$prior$nlpar, c("", "A", "B")) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 500, chains = 1, cores = 1) expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) ggsave("~/scripts/fahlgren_lab/labMeetings/exponential_fitGrowth.png", plot, width = 10, height = 6, dpi = 300, bg = "#ffffff" ) expect_s3_class(plot, "ggplot") }) test_that("Power law brms model pipeline", { set.seed(123) simdf <- growthSim("power law", n = 20, t = 25, params = list("A" = c(15, 12), "B" = c(0.75, 0.8)) ) ss <- growthSS( model = "power law", form = y ~ time | id / group, sigma = "linear", list("A" = 10, "B" = 1), df = simdf, type = "brms" ) expect_equal(ss$prior$nlpar, c("", "A", "B")) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 500, chains = 1, cores = 1) expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) ggsave("~/scripts/fahlgren_lab/labMeetings/powerlaw_fitGrowth.png", plot, width = 10, height = 6, dpi = 300, bg = "#ffffff" ) expect_s3_class(plot, "ggplot") }) test_that("linear brms model pipeline", { set.seed(123) simdf <- growthSim("linear", n = 20, t = 25, params = list("A" = c(15, 12)) ) ss <- growthSS( model = "linear", form = y ~ time | id / group, sigma = "int", list("A" = 5), df = simdf, type = "brms" ) expect_equal(ss$prior$nlpar, c("", "A")) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 500, chains = 1, cores = 1) expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) ggsave("~/scripts/fahlgren_lab/labMeetings/linear_fitGrowth.png", plot, width = 10, height = 6, dpi = 300, bg = "#ffffff" ) expect_s3_class(plot, "ggplot") }) test_that("logarithmic brms model pipeline", { set.seed(123) simdf <- growthSim("logarithmic", n = 20, t = 25, params = list("A" = c(15, 12)) ) ss <- growthSS( model = "logarithmic", form = y ~ time | id / group, sigma = "int", list("A" = 5), df = simdf, type = "brms" ) expect_equal(ss$prior$nlpar, c("", "A")) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 500, chains = 1, cores = 1) expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) ggsave("~/scripts/fahlgren_lab/labMeetings/logarithmic_fitGrowth.png", plot, width = 10, height = 6, dpi = 300, bg = "#ffffff" ) expect_s3_class(plot, "ggplot") }) test_that("linear sub model with prior brms model pipeline", { set.seed(123) simdf <- growthSim("linear", n = 20, t = 25, params = list("A" = c(15, 12)) ) model <- "linear" form <- y ~ time | id / group sigma <- "linear" priors <- list("A" = 5, "sigmaA" = 2) df <- simdf type <- "brms" ss <- growthSS( model = "linear", form = y ~ time | id / group, sigma = "linear", list("A" = 5, "sigmaA" = 2), df = simdf, type = "brms" ) expect_equal(ss$prior$nlpar, c("", "A", "sigmaA")) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 500, chains = 1, cores = 1) expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) ggsave("~/scripts/fahlgren_lab/labMeetings/linear_fitGrowth.png", plot, width = 10, height = 6, dpi = 300, bg = "#ffffff" ) expect_s3_class(plot, "ggplot") }) test_that("GAM brms model pipeline", { set.seed(123) simdf <- growthSim("logistic", n = 20, t = 25, params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5)) ) ss <- growthSS( model = "gam", form = y ~ time | id / group, sigma = "int", df = simdf, type = "brms" ) fit <- suppressWarnings(fitGrowth(ss, backend = "cmdstanr", iter = 500, chains = 1, cores = 1)) expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) ggsave("~/scripts/fahlgren_lab/labMeetings/gam_fitGrowth.png", plot, width = 10, height = 6, dpi = 300, bg = "#ffffff" ) expect_s3_class(plot, "ggplot") }) test_that("linear+linear brms model pipeline", { set.seed(123) simdf <- growthSim("linear + linear", n = 20, t = 25, params = list("linear1A" = c(15, 12), "changePoint1" = c(8, 6), "linear2A" = c(3, 5)) ) ss <- growthSS( model = "linear + linear", form = y ~ time | id / group, sigma = "spline", list("linear1A" = 10, "changePoint1" = 5, "linear2A" = 2), df = simdf, type = "brms" ) expect_equal(ss$prior$nlpar, c("", "", "linear1A", "changePoint1", "linear2A")) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 500, chains = 1, cores = 1) expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) ggsave("~/scripts/fahlgren_lab/labMeetings/linearPlusLinear_fitGrowth.png", plot, width = 10, height = 6, dpi = 300, bg = "#ffffff" ) expect_s3_class(plot, "ggplot") }) test_that("linear+logistic brms model pipeline", { set.seed(123) simdf <- growthSim("linear + logistic", n = 20, t = 25, params = list( "linear1A" = c(15, 12), "changePoint1" = c(8, 6), "logistic2A" = c(100, 150), "logistic2B" = c(10, 8), "logistic2C" = c(3, 2.5) ) ) ss <- growthSS( model = "linear + logistic", form = y ~ time | id / group, sigma = "spline", list( "linear1A" = 10, "changePoint1" = 5, "logistic2A" = 100, "logistic2B" = 10, "logistic2C" = 3 ), df = simdf, type = "brms" ) expect_equal(ss$prior$nlpar, c( "", "", "linear1A", "changePoint1", "logistic2A", "logistic2B", "logistic2C" )) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 500, chains = 1, cores = 1) expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) ggsave("~/scripts/fahlgren_lab/labMeetings/linearPlusLogistic_fitGrowth.png", plot, width = 10, height = 6, dpi = 300, bg = "#ffffff" ) expect_s3_class(plot, "ggplot") }) test_that("linear+gam brms model pipeline", { set.seed(123) simdf <- growthSim("linear + logistic", n = 20, t = 25, # using logistic data, but modeling as a gam params = list( "linear1A" = c(15, 12), "changePoint1" = c(8, 6), "logistic2A" = c(100, 150), "logistic2B" = c(10, 8), "logistic2C" = c(3, 2.5) ) ) ss <- growthSS( model = "linear + gam", form = y ~ time | id / group, sigma = "homo", list("linear1A" = 10, "changePoint1" = 5), df = simdf, type = "brms" ) expect_equal(ss$prior$nlpar, c("", "linear1A", "changePoint1")) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 500, chains = 1, cores = 1) expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) ggsave("~/scripts/fahlgren_lab/labMeetings/linearPlusGAM_fitGrowth.png", plot, width = 10, height = 6, dpi = 300, bg = "#ffffff" ) expect_s3_class(plot, "ggplot") }) test_that("linear + linear + linear brms model pipeline", { set.seed(123) simdf <- growthSim("linear + linear + linear", n = 25, t = 50, params = list( "linear1A" = c(10, 12), "changePoint1" = c(8, 6), "linear2A" = c(1, 2), "changePoint2" = c(25, 30), "linear3A" = c(20, 24) ) ) ss <- growthSS( model = "linear + linear + linear", form = y ~ time | id / group, sigma = "spline", list("linear1A" = 10, "changePoint1" = 5, "linear2A" = 2, "changePoint2" = 15, "linear3A" = 5), df = simdf, type = "brms" ) expect_equal(ss$prior$nlpar, c( "", "", "linear1A", "changePoint1", "linear2A", "changePoint2", "linear3A" )) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 500, chains = 1, cores = 1) expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) ggsave("~/scripts/fahlgren_lab/labMeetings/linearPlusLinearPlusLinear_fitGrowth.png", plot, width = 10, height = 6, dpi = 300, bg = "#ffffff" ) expect_s3_class(plot, "ggplot") }) test_that("Logistic brms logistic sub model pipeline", { set.seed(123) simdf <- growthSim("logistic", n = 20, t = 25, params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5)) ) ss <- growthSS( model = "logistic", form = y ~ time | id / group, sigma = "logistic", list("A" = 130, "B" = 10, "C" = 3, "sigmaA" = 20, "sigmaB" = 10, "sigmaC" = 2), df = simdf, type = "brms" ) expect_equal(ss$prior$nlpar, c("", "A", "B", "C", "sigmaA", "sigmaB", "sigmaC")) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 500, chains = 1, cores = 1) # that's fast expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) ggsave("~/scripts/fahlgren_lab/labMeetings/logistic_logisticSubModel.png", plot, width = 10, height = 6, dpi = 300, bg = "#ffffff" ) expect_s3_class(plot, "ggplot") }) test_that("Logistic brms gompertz sub model pipeline", { set.seed(123) simdf <- growthSim("logistic", n = 20, t = 25, params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5)) ) ss <- growthSS( model = "logistic", form = y ~ time | id / group, sigma = "gompertz", list("A" = 130, "B" = 10, "C" = 3, "sigmaA" = 20, "sigmaB" = 10, "sigmaC" = 2), df = simdf, type = "brms" ) expect_equal(ss$prior$nlpar, c("", "A", "B", "C", "sigmaA", "sigmaB", "sigmaC")) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 500, chains = 1, cores = 1) expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) ggsave("~/scripts/fahlgren_lab/labMeetings/logistic_gompSubModel.png", plot, width = 10, height = 6, dpi = 300, bg = "#ffffff" ) expect_s3_class(plot, "ggplot") }) test_that("Logistic brms monomolecular sub model pipeline", { set.seed(123) simdf <- growthSim("logistic", n = 20, t = 25, params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5)) ) ss <- growthSS( model = "logistic", form = y ~ time | id / group, sigma = "monomolecular", list("A" = 130, "B" = 10, "C" = 3, "sigmaA" = 5, "sigmaB" = 0.5), df = simdf, type = "brms" ) expect_equal(ss$prior$nlpar, c("", "A", "B", "C", "sigmaA", "sigmaB")) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 500, chains = 1, cores = 1) expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) ggsave("~/scripts/fahlgren_lab/labMeetings/logistic_monoSubModel.png", plot, width = 10, height = 6, dpi = 300, bg = "#ffffff" ) expect_s3_class(plot, "ggplot") }) test_that("int+int homoskedastic model pipeline", { set.seed(123) noise <- do.call(rbind, lapply(1:30, function(i) { chngpt <- rnorm(2, 18, 2) rbind( data.frame( id = paste0("id_", i), time = 1:chngpt[1], group = "a", y = c(runif(chngpt[1] - 1, 0, 20), rnorm(1, 5, 1)) ), data.frame( id = paste0("id_", i), time = 1:chngpt[2], group = "b", y = c(runif(chngpt[2] - 1, 0, 20), rnorm(1, 5, 1)) ) ) })) noise2 <- do.call(rbind, lapply(1:30, function(i) { start1 <- max(noise[noise$id == paste0("id_", i) & noise$group == "a", "time"]) start2 <- max(noise[noise$id == paste0("id_", i) & noise$group == "b", "time"]) rbind( data.frame( id = paste0("id_", i), time = start1:40, group = "a", y = c(runif(length(start1:40), 15, 50)) ), data.frame( id = paste0("id_", i), time = start2:40, group = "b", y = c(runif(length(start2:40), 15, 50)) ) ) })) simdf <- rbind(noise, noise2) ss <- growthSS( model = "int + int", form = y ~ time | id / group, sigma = "int", list("int1" = 10, "changePoint1" = 10, "int2" = 20), df = simdf, type = "brms" ) expect_equal(ss$prior$nlpar, c("", "int1", "changePoint1", "int2")) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 500, chains = 1, cores = 1) expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) ggsave("~/scripts/fahlgren_lab/labMeetings/intPlusInt_fitGrowth.png", plot, width = 10, height = 6, dpi = 300, bg = "#ffffff" ) expect_s3_class(plot, "ggplot") }) test_that("int+int fixed changepoint homoskedastic model pipeline", { set.seed(123) noise <- do.call(rbind, lapply(1:30, function(i) { chngpt <- c(20, 21) rbind( data.frame( id = paste0("id_", i), time = 1:chngpt[1], group = "a", y = c(runif(chngpt[1] - 1, 0, 20), rnorm(1, 5, 1)) ), data.frame( id = paste0("id_", i), time = 1:chngpt[2], group = "b", y = c(runif(chngpt[2] - 1, 0, 20), rnorm(1, 5, 1)) ) ) })) noise2 <- do.call(rbind, lapply(1:30, function(i) { start1 <- max(noise[noise$id == paste0("id_", i) & noise$group == "a", "time"]) start2 <- max(noise[noise$id == paste0("id_", i) & noise$group == "b", "time"]) rbind( data.frame( id = paste0("id_", i), time = start1:40, group = "a", y = c(runif(length(start1:40), 15, 50)) ), data.frame( id = paste0("id_", i), time = start2:40, group = "b", y = c(runif(length(start2:40), 15, 50)) ) ) })) simdf <- rbind(noise, noise2) ss <- growthSS( model = "int + int", form = y ~ time | id / group, sigma = "int", list("int1" = 10, "fixedChangePoint1" = 20, "int2" = 20), df = simdf, type = "brms" ) expect_equal(ss$prior$nlpar, c("", "int1", "int2")) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 500, chains = 1, cores = 1) expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) ggsave("~/scripts/fahlgren_lab/labMeetings/intPlusInt_fixedChngpt_fitGrowth.png", plot, width = 10, height = 6, dpi = 300, bg = "#ffffff" ) expect_s3_class(plot, "ggplot") }) test_that("int+int thresholded homoskedasticity model pipeline", { set.seed(123) noise <- do.call(rbind, lapply(1:30, function(i) { chngpt <- rnorm(2, 18, 2) rbind( data.frame( id = paste0("id_", i), time = 1:chngpt[1], group = "a", y = c(runif(chngpt[1] - 1, 0, 20), rnorm(1, 5, 1)) ), data.frame( id = paste0("id_", i), time = 1:chngpt[2], group = "b", y = c(runif(chngpt[2] - 1, 0, 20), rnorm(1, 5, 1)) ) ) })) noise2 <- do.call(rbind, lapply(1:30, function(i) { start1 <- max(noise[noise$id == paste0("id_", i) & noise$group == "a", "time"]) start2 <- max(noise[noise$id == paste0("id_", i) & noise$group == "b", "time"]) rbind( data.frame( id = paste0("id_", i), time = start1:40, group = "a", y = c(runif(length(start1:40), 15, 50)) ), data.frame( id = paste0("id_", i), time = start2:40, group = "b", y = c(runif(length(start2:40), 15, 50)) ) ) })) simdf <- rbind(noise, noise2) ss <- growthSS( model = "int + int", form = y ~ time | id / group, sigma = "int + int", list( "int1" = 10, "changePoint1" = 10, "int2" = 20, "sigmaint1" = 10, "sigmachangePoint1" = 10, "sigmaint2" = 10 ), df = simdf, type = "brms" ) expect_equal(ss$prior$nlpar, c( "", "int1", "changePoint1", "int2", "sigmaint1", "sigmachangePoint1", "sigmaint2" )) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 500, chains = 1, cores = 1) expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) ggsave("~/scripts/fahlgren_lab/labMeetings/intPlusInt_heteroskedastic_fitGrowth.png", plot, width = 10, height = 6, dpi = 300, bg = "#ffffff" ) expect_s3_class(plot, "ggplot") }) test_that("int + linear model and submodel pipeline", { set.seed(123) noise <- do.call(rbind, lapply(1:30, function(i) { chngpt <- rnorm(2, 18, 2) rbind( data.frame( id = paste0("id_", i), time = 1:chngpt[1], group = "a", y = c(runif(chngpt[1] - 1, 0, 20), rnorm(1, 5, 1)) ), data.frame( id = paste0("id_", i), time = 1:chngpt[2], group = "b", y = c(runif(chngpt[2] - 1, 0, 20), rnorm(1, 5, 1)) ) ) })) signal <- growthSim("linear", n = 30, t = 20, params = list("A" = c(3, 5)) ) signal <- do.call(rbind, lapply(unique(paste0(signal$id, signal$group)), function(int) { noisesub <- noise[paste0(noise$id, noise$group) == int, ] signalSub <- signal[paste0(signal$id, signal$group) == int, ] y_end <- noisesub[noisesub$time == max(noisesub$time), "y"] signalSub$time <- signalSub$time + max(noisesub$time) signalSub$y <- y_end + signalSub$y signalSub })) simdf <- rbind(noise, signal) ss <- growthSS( model = "int + linear", form = y ~ time | id / group, sigma = "int + linear", list( "int1" = 10, "changePoint1" = 10, "linear2A" = 20, "sigmaint1" = 10, "sigmachangePoint1" = 10, "sigmalinear2A" = 10 ), df = simdf, type = "brms" ) expect_equal(ss$prior$nlpar, c( "", "int1", "changePoint1", "linear2A", "sigmaint1", "sigmachangePoint1", "sigmalinear2A" )) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 500, chains = 1, cores = 1) expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df, timeRange = 1:40) ggsave("~/scripts/fahlgren_lab/labMeetings/intPlusLinear_heteroskedIntPlusLinear_fitGrowth.png", plot, width = 10, height = 6, dpi = 300, bg = "#ffffff" ) expect_s3_class(plot, "ggplot") }) test_that("int + Logistic brms int+spline sub model pipeline", { set.seed(123) noise <- do.call(rbind, lapply(1:30, function(i) { chngpt <- rnorm(2, 18, 2) rbind( data.frame( id = paste0("id_", i), time = 1:chngpt[1], group = "a", y = c(runif(chngpt[1] - 1, 0, 20), rnorm(1, 5, 1)) ), data.frame( id = paste0("id_", i), time = 1:chngpt[2], group = "b", y = c(runif(chngpt[2] - 1, 0, 20), rnorm(1, 5, 1)) ) ) })) signal <- growthSim("logistic", n = 20, t = 30, params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5)) ) signal <- do.call(rbind, lapply(unique(paste0(signal$id, signal$group)), function(int) { noisesub <- noise[paste0(noise$id, noise$group) == int, ] signalSub <- signal[paste0(signal$id, signal$group) == int, ] y_end <- noisesub[noisesub$time == max(noisesub$time), "y"] signalSub$time <- signalSub$time + max(noisesub$time) signalSub$y <- y_end + signalSub$y signalSub })) simdf <- rbind(noise, signal) simdf <- simdf[simdf$time < 45, ] ss <- growthSS( model = "int+logistic", form = y ~ time | id / group, sigma = "int + spline", list( "int1" = 5, "changePoint1" = 10, "logistic2A" = 130, "logistic2B" = 10, "logistic2C" = 3, "sigmaint1" = 5, "sigmachangePoint1" = 15 ), df = simdf, type = "brms" ) expect_equal(ss$prior$nlpar, c( "", "int1", "changePoint1", "logistic2A", "logistic2B", "logistic2C", "sigmaint1", "sigmachangePoint1" )) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 500, chains = 1, cores = 1) expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) ggsave("~/scripts/fahlgren_lab/labMeetings/intPluslogistic_intPlusGAMSubModel.png", plot, width = 10, height = 6, dpi = 300, bg = "#ffffff" ) expect_s3_class(plot, "ggplot") }) test_that("fixed and estimated changepoints can be mixed in growth formula", { simdf1 <- growthSim( model = "logistic", n = 20, t = 20, params = list("A" = c(180, 160), "B" = c(9, 11), "C" = c(3, 3.5)) ) simdf2 <- growthSim( model = "linear + linear", n = 20, t = 20, params = list("linear1A" = c(6, 8), "changePoint1" = c(7, 9), "linear2A" = c(15, 20)) ) simdf2_adj <- do.call(rbind, lapply(unique(paste0(simdf2$id, simdf2$group)), function(int) { p1 <- simdf1[paste0(simdf1$id, simdf1$group) == int, ] p2 <- simdf2[paste0(simdf2$id, simdf2$group) == int, ] y_end_p1 <- p1[p1$time == max(p1$time), "y"] p2$time <- p2$time + max(p1$time) p2$y <- y_end_p1 + p2$y p2 })) simdf <- rbind(simdf1, simdf2_adj) ss <- growthSS( model = "logistic+linear+linear", form = y ~ time | id / group, sigma = "logistic+linear", df = simdf, start = list( "logistic1A" = 130, "logistic1B" = 10, "logistic1C" = 3.5, "fixedChangePoint1" = 20, "linear2A" = 5, "changePoint2" = 28, "linear3A" = 20, "sigmalogistic1A" = 10, "sigmalogistic1B" = 12, "sigmalogistic1C" = 20, "sigmafixedChangePoint1" = 20, "sigmalinear2A" = 3 ), type = "brms" ) expect_equal(ss$prior$nlpar, c( "", "logistic1A", "logistic1B", "logistic1C", "linear2A", "changePoint2", "linear3A", "sigmalogistic1A", "sigmalogistic1B", "sigmalogistic1C", "sigmalinear2A" )) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 500, chains = 1, cores = 1) expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) ggsave("~/scripts/fahlgren_lab/labMeetings/threePart_fixedAndEstimatedChangepoint.png", plot, width = 10, height = 6, dpi = 300, bg = "#ffffff" ) expect_s3_class(plot, "ggplot") }) test_that("logistic decay as a segment", { simdf <- growthSim( model = "logistic + logistic decay", n = 20, t = 45, params = list( "logistic1A" = c(120, 140), "logistic1B" = c(12, 10), "logistic1C" = c(3, 3.5), "changePoint1" = c(20, 23), "logistic2A" = c(90, 100), "logistic2B" = c(11, 13), "logistic2C" = c(3, 3.5) ) ) ss <- growthSS( model = "logistic + logistic decay", form = y ~ time | id / group, sigma = "spline", list( "logistic1A" = 100, "logistic1B" = 10, "logistic1C" = 3, "changePoint1" = 20, "logistic2A" = 100, "logistic2B" = 10, "logistic2C" = 3 ), df = simdf, type = "brms" ) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 500, chains = 1, cores = 1) plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) ggsave("~/scripts/fahlgren_lab/labMeetings/logistic_plus_logisticDecay.png", plot, width = 10, height = 6, dpi = 300, bg = "#ffffff" ) expect_s3_class(plot, "ggplot") }) test_that("Test flexsurv model", { set.seed(123) model <- "survival gompertz" form <- y > 100 ~ time | id / group df <- growthSim("logistic", n = 20, t = 25, params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5)) ) ss <- growthSS(model = model, form = form, df = df, type = "flexsurv") library(flexsurv) fit <- fitGrowth(ss) p <- growthPlot(fit, form = ss$pcvrForm, df = ss$df) expect_s3_class(p, "ggplot") }) test_that("Logistic Poisson Model", { set.seed(123) form <- y ~ time | id / group df <- growthSim("count: logistic", n = 20, t = 25, params = list("A" = c(10, 12), "B" = c(13, 11), "C" = c(3, 3.5)) ) ss <- growthSS( model = "poisson: logistic", form = y ~ time | id / group, sigma = NULL, df = df, start = list("A" = 8, "B" = 10, "C" = 3) ) lapply(ss, head) fit <- fitGrowth(ss, iter = 600, cores = 1, chains = 1, backend = "cmdstanr") expect_s3_class(fit, "brmsfit") p <- growthPlot(fit, ss$pcvrForm, df = ss$df) expect_s3_class(p, "ggplot") }) test_that("Beta DRC Model", { set.seed(123) form <- y ~ time | id / group df <- growthSim( "beta", n = 20, t = 50, params = list( "A" = c(10, 10), "B" = c(1.25, 1.3), "C" = c(20, 22), "D" = c(5, 5), "E" = c(30, 32) ) ) #* consider using ss with nls to get ideas for parameters ss <- growthSS( model = "beta", form = y ~ time | id / group, sigma = NULL, df = df, start = list("A" = 10, "B" = 1, "C" = 15, "D" = 3, "E" = 25) ) lapply(ss, head) ss$initfun <- 0 fit <- fitGrowth(ss, iter = 600, cores = 1, chains = 1, backend = "cmdstanr") expect_s3_class(fit, "brmsfit") p <- growthPlot(fit, ss$pcvrForm, df = ss$df) expect_s3_class(p, "ggplot") }) }