test_that("Logistic brms Model with Intercept", { skip_on_cran() set.seed(123) simdf <- growthSim("logistic", n = 20, t = 25, params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5)) ) simdf$y <- simdf$y + 15 ss <- growthSS( model = "int_logistic", form = y ~ time | id / group, sigma = "int", list("A" = 130, "B" = 10, "C" = 3, "I" = 10), df = simdf, type = "brms" ) expect_equal(ss$prior$nlpar, c("", "A", "B", "C", "I")) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 200, chains = 1, cores = 1) expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) expect_s3_class(plot, "ggplot") }) test_that("Logistic Decay brms Model with Intercept", { skip_on_cran() set.seed(123) logistic_df <- growthSim( "logistic decay", n = 20, t = 25, params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5)) ) logistic_df$y <- logistic_df$y + 300 ss <- growthSS( model = "decay int_logistic", form = y ~ time | id / group, sigma = "int", list("A" = 130, "B" = 10, "C" = 3, "I" = 150), df = logistic_df, type = "brms" ) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 200, chains = 1, cores = 1) expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) expect_s3_class(plot, "ggplot") }) test_that("Gompertz brms model pipeline", { skip_on_cran() set.seed(123) simdf <- growthSim( "gompertz", n = 20, t = 25, params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(0.25, 0.25)) ) simdf$y <- simdf$y + 30 ss <- growthSS( model = "int_gompertz", form = y ~ time | id / group, sigma = "int", list("A" = 130, "B" = 10, "C" = 1, "I" = 20), df = simdf, type = "brms" ) expect_equal(ss$prior$nlpar, c("", "A", "B", "C", "I")) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 200, chains = 1, cores = 1) expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) expect_s3_class(plot, "ggplot") }) test_that("intercept in submodel works", { skip_on_cran() set.seed(123) simdf <- growthSim("gompertz", n = 20, t = 25, params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(0.25, 0.25)) ) ss <- growthSS( model = "gompertz", form = y ~ time | id / group, sigma = "int_linear", list("A" = 130, "B" = 10, "C" = 1, "sigmaI" = 1, "sigmaA" = 2), df = simdf, type = "brms" ) expect_equal(ss$prior$nlpar, c("", "A", "B", "C", "sigmaI", "sigmaA")) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 200, chains = 1, cores = 1) expect_s3_class(fit, "brmsfit") plot <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) expect_s3_class(plot, "ggplot") }) test_that("intercepts work in a changepoint model", { skip_on_cran() set.seed(123) simdf <- growthSim("linear + linear", n = 20, t = 25, params = list( "linear1A" = c(15, 12), "changePoint1" = c(8, 6), "linear2A" = c(3, 5) ) ) simdf$y <- simdf$y + 30 ss <- growthSS( model = "int_linear + linear", form = y ~ time | id / group, sigma = "spline", list("linear1A" = 10, "changePoint1" = 5, "linear2A" = 2, "I" = 20), df = simdf, type = "brms" ) expect_equal(ss$prior$nlpar, c("", "", "linear1A", "changePoint1", "linear2A", "I")) fit <- fitGrowth(ss, backend = "cmdstanr", iter = 200, chains = 1, cores = 1) expect_s3_class(fit, "brmsfit") })