if (!interactive()) pdf(NULL) #* ************************************************************ #* *************** `growthSim options` *************** #* ************************************************************ test_that("Count data can be made by growthSim", { # use lowercase parameters df <- suppressWarnings( growthSim("count:gompertz", n = 20, t = 25, params = list("a" = c(100, 90), "b" = 10, "c" = 0.25) ) ) expect_equal(any(is.na(as.integer(df$y))), FALSE) # use unnamed parameters df <- growthSim("count:gompertz", n = 20, t = 25, params = list(100, 10, 0.25) ) expect_equal(any(is.na(as.integer(df$y))), FALSE) }) test_that("Fixed Changepoint data can be made by growthSim", { expect_error( growthSim( model = "gompertz + linear", n = 20, t = 50, params = list(100, 10, 0.25, 25, 3) ) ) df <- growthSim( model = "gompertz + linear", n = 20, t = 50, params = list( "gompertz1A" = 100, "gompertz1B" = 10, "gompertz1C" = 0.25, "fixedChangePoint1" = 25, "linear2A" = 3 ) ) expect_equal(any(is.na(as.integer(df$y))), FALSE) }) #* ************************************************************ #* *************** `Logistic growth modeling` *************** #* ************************************************************ set.seed(123) logistic_df <- growthSim("logistic", n = 20, t = 25, params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5)) ) test_that("Test Logistic nls modeling", { ss <- suppressMessages(growthSS( model = "logistic", form = y ~ time | id / group, df = logistic_df, type = "nls" )) expect_equal( as.numeric(unlist(ss$start)), c( 184.201800401145, 184.201800401145, 12.0514357556166, 12.0514357556166, 3.34892124655795, 3.34892124655795 ) ) fit <- fitGrowth(ss) expect_s3_class(fit, "nls") nls_p <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) + ggplot2::labs(title = "nls") expect_s3_class(nls_p, "ggplot") test_res <- testGrowth(ss, fit, test = "A")$anova expect_s3_class(test_res, "anova") test_res <- testGrowth(ss, fit, test = list("A1 - A2 *1.1", "(B1+1) - B2", "C1 - (C2-0.5)")) expect_equal(dim(test_res), c(3, 5)) }) test_that("Test Logistic nlrq modeling", { ss <- suppressMessages(growthSS( model = "logistic", form = y ~ time | id / group, df = logistic_df, type = "nlrq", tau = c(0.5, 0.8) )) expect_equal( as.numeric(unlist(ss$start)), c( 184.201800401145, 184.201800401145, 12.0514357556166, 12.0514357556166, 3.34892124655795, 3.34892124655795 ) ) fit <- fitGrowth(ss) expect_s3_class(fit[[1]], "nlrq") nlrq_p <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df, groupFill = "plasma") + ggplot2::labs(title = "nlrq") expect_s3_class(nlrq_p, "ggplot") test_res <- suppressWarnings(testGrowth(ss, fit, test = "A")$`0.5`) expect_s3_class(test_res, "anova") test_res <- testGrowth(ss, fit = fit, test = "a|0.5|A > b|0.5|A") expect_equal(dim(test_res), c(2, 7)) }) test_that("Test Logistic nlme modeling", { ss <- growthSS( model = "logistic", form = y ~ time | id / group, sigma = "power", df = logistic_df, type = "nlme" ) expect_equal( as.numeric(unlist(ss$start)), c( 184.201800401145, 184.201800401145, 12.0514357556166, 12.0514357556166, 3.34892124655795, 3.34892124655795 ) ) fit <- suppressWarnings(fitGrowth(ss)) expect_s3_class(fit, "nlme") nlme_p <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) nlme_p <- nlme_p + ggplot2::labs(title = "nlme") expect_s3_class(nlme_p, "ggplot") test_res <- suppressWarnings(testGrowth(ss, fit, test = "A")$anova) expect_s3_class(test_res, "anova.lme") test_res <- testGrowth(fit = fit, test = list( "A.groupa - A.groupb *1.1", "(B.groupa+1) - B.groupb", "C.groupa - (C.groupb-0.5)" )) expect_equal(dim(test_res), c(3, 5)) }) test_that("Test Logistic brms model setup", { ss <- growthSS( model = "logistic", form = y ~ time | id / group, sigma = "gompertz", list("A" = 130, "B" = 12, "C" = 3, "sigmaA" = 20, "sigmaB" = 15, "sigmaC" = 0.25), df = logistic_df, type = "brms" ) expect_equal(ss$prior$nlpar, c("", "A", "B", "C", "sigmaA", "sigmaB", "sigmaC")) expect_s3_class(ss$formula, "brmsformula") }) #* ************************************************************ #* *************** `Testing pcvrFormula options` *************** #* ************************************************************ test_that("Test Logistic nls modeling without individuals", { ss <- suppressMessages(growthSS( model = "logistic", form = y ~ time | group, df = logistic_df, type = "nls" )) expect_equal( as.numeric(unlist(ss$start)), c( 184.201800401145, 184.201800401145, 12.0514357556166, 12.0514357556166, 3.34892124655795, 3.34892124655795 ) ) fit <- fitGrowth(ss) expect_s3_class(fit, "nls") nls_p2 <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) expect_s3_class(nls_p2, "ggplot") }) test_that("Test Logistic nls modeling without individuals or groups", { ss <- suppressMessages(growthSS( model = "logistic", form = y ~ time, df = logistic_df, type = "nls" )) expect_equal( as.numeric(unlist(ss$start)), c(184.201800401145, 12.0514357556166, 3.34892124655795) ) fit <- fitGrowth(ss) expect_s3_class(fit, "nls") nls_p2 <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) expect_s3_class(nls_p2, "ggplot") }) test_that("Test Logistic nlrq modeling without individuals", { ss <- suppressMessages(growthSS( model = "logistic", form = y ~ time | group, df = logistic_df, type = "nlrq", tau = 0.5 )) expect_equal( as.numeric(unlist(ss$start)), c( 184.201800401145, 184.201800401145, 12.0514357556166, 12.0514357556166, 3.34892124655795, 3.34892124655795 ) ) fit <- fitGrowth(ss) expect_s3_class(fit, "nlrq") nlrq_p2 <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) expect_s3_class(nlrq_p2, "ggplot") }) test_that("Test Logistic nlrq modeling without individuals or groups", { ss <- suppressMessages(growthSS( model = "logistic", form = y ~ time, df = logistic_df, type = "nlrq", tau = 0.5 )) expect_equal( as.numeric(unlist(ss$start)), c(184.201800401145, 12.0514357556166, 3.34892124655795) ) fit <- fitGrowth(ss) expect_s3_class(fit, "nlrq") nlrq_p2 <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) expect_s3_class(nlrq_p2, "ggplot") }) test_that("Test Logistic nlme modeling without individuals", { ss <- growthSS( model = "logistic", form = y ~ time | group, sigma = "power", # failing on this so far df = logistic_df, type = "nlme" ) expect_equal( as.numeric(unlist(ss$start)), c( 184.201800401145, 184.201800401145, 12.0514357556166, 12.0514357556166, 3.34892124655795, 3.34892124655795 ) ) fit <- suppressWarnings(fitGrowth(ss)) expect_s3_class(fit, "nlme") nlme_p2 <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) expect_s3_class(nlme_p2, "ggplot") }) test_that("Test Logistic nlme modeling without individuals or groups", { ss <- growthSS( model = "logistic", form = y ~ time, sigma = "power", # failing on this so far df = logistic_df, type = "nlme" ) expect_equal( as.numeric(unlist(ss$start)), c(184.201800401145, 12.0514357556166, 3.34892124655795) ) fit <- suppressWarnings(fitGrowth(ss)) expect_s3_class(fit, "nlme") nlme_p2 <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) expect_s3_class(nlme_p2, "ggplot") }) #* ************************************************************ #* *************** `Monomolecular growth modeling` *************** #* ************************************************************ set.seed(123) mono_df <- growthSim("monomolecular", n = 20, t = 25, params = list("A" = c(200, 160), "B" = c(0.08, 0.1)) ) test_that("Test monomolecular nls modeling", { ss <- suppressMessages(growthSS( model = "monomolecular", form = y ~ time | id / group, df = mono_df, type = "nls" )) expect_equal( as.numeric(unlist(ss$start)), c(58.0855457770439, 58.0855457770439, 0.0457652584520121, 0.0457652584520121) ) fit <- fitGrowth(ss) expect_s3_class(fit, "nls") p <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) expect_s3_class(p, "ggplot") }) test_that("Test monomolecular nlrq modeling", { ss <- suppressMessages(growthSS( model = "monomolecular", form = y ~ time | id / group, df = mono_df, type = "nlrq" )) expect_equal( as.numeric(unlist(ss$start)), c(58.0855457770439, 58.0855457770439, 0.0457652584520121, 0.0457652584520121) ) fit <- fitGrowth(ss) expect_s3_class(fit, "nlrq") p <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) expect_s3_class(p, "ggplot") }) test_that("Test monomolecular nlme modeling", { ss <- growthSS( model = "monomolecular", form = y ~ time | id / group, sigma = "power", df = mono_df, type = "nlme" ) expect_equal( as.numeric(unlist(ss$start)), c(58.0855457770439, 58.0855457770439, 0.0457652584520121, 0.0457652584520121) ) fit <- suppressWarnings(fitGrowth(ss)) expect_s3_class(fit, "nlme") p <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) expect_s3_class(p, "ggplot") }) test_that("Test monomolecular brms model setup", { ss <- growthSS( model = "monomolecular", form = y ~ time | id / group, sigma = "spline", list("A" = 130, "B" = 0.1), df = mono_df, type = "brms" ) expect_equal(ss$prior$nlpar, c("", "", "A", "B")) expect_s3_class(ss$formula, "brmsformula") }) #* ************************************************************ #* *************** `Logarithmic growth modeling` *************** #* ************************************************************ set.seed(123) lgrthmc_df <- growthSim("logarithmic", n = 20, t = 25, params = list("A" = c(5, 7)) ) test_that("Test logarithmic nls modeling", { ss <- suppressMessages(growthSS( model = "logarithmic", form = y ~ time | id / group, df = lgrthmc_df, type = "nls" )) fit <- fitGrowth(ss) expect_s3_class(fit, "nls") p <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) expect_s3_class(p, "ggplot") }) test_that("Test logarithmic nlrq modeling", { ss <- suppressMessages(growthSS( model = "logarithmic", form = y ~ time | id / group, df = lgrthmc_df, type = "nlrq" )) fit <- fitGrowth(ss) expect_s3_class(fit, "nlrq") p <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) expect_s3_class(p, "ggplot") }) test_that("Test logarithmic nlme modeling", { ss <- growthSS( model = "logarithmic", form = y ~ time | id / group, sigma = "exp", df = lgrthmc_df, type = "nlme" ) fit <- suppressWarnings(fitGrowth(ss)) expect_s3_class(fit, "nlme") p <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) expect_s3_class(p, "ggplot") }) test_that("Test logarithmic brms model setup", { ss <- growthSS( model = "logarithmic", form = y ~ time | id / group, sigma = "spline", list("A" = 3), df = lgrthmc_df, type = "brms" ) expect_equal(ss$prior$nlpar, c("", "", "A")) expect_s3_class(ss$formula, "brmsformula") }) #* ************************************************************ #* *************** `general additive growth modeling` *************** #* ************************************************************ set.seed(123) gomp_df <- growthSim("gompertz", n = 20, t = 25, params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(0.2, 0.25)) ) test_that("Test nls gam modeling", { ss <- suppressMessages(growthSS( model = "gam", form = y ~ time | id / group, df = gomp_df, type = "nls" )) expect_equal(as.character(ss$formula), as.character(y ~ bs(time) * group)) fit <- fitGrowth(ss) expect_s3_class(fit, "lm") p <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) expect_s3_class(p, "ggplot") av <- testGrowth(ss = ss, fit)$anova expect_s3_class(av, "anova") }) test_that("Test nlrq gam modeling", { ss <- suppressMessages(growthSS( model = "gam", form = y ~ time | id / group, df = gomp_df, type = "nlrq" )) expect_equal(as.character(ss$formula), as.character(y ~ bs(time) * group)) fit <- fitGrowth(ss) expect_s3_class(fit, "rq") p <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) expect_s3_class(p, "ggplot") av <- suppressWarnings(testGrowth(ss = ss, fit)$anova) expect_s3_class(av, "anova.rq") }) test_that("Test nlme gam", { ss <- growthSS( model = "gam", form = y ~ time | id / group, sigma = "exp", df = gomp_df, type = "nlme" ) expect_equal(as.character(ss$formula$model), as.character(y ~ time * group)) fit <- suppressWarnings(fitGrowth(ss)) expect_s3_class(fit, "lme") p <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) expect_s3_class(p, "ggplot") av <- testGrowth(ss = ss, fit)$anova expect_s3_class(av, "anova.lme") }) test_that("Test mgcv gam", { ss <- suppressMessages(growthSS( model = "gam", form = y ~ time | id / group, df = gomp_df, type = "mgcv" )) expect_equal(as.character(ss$formula), as.character(y ~ 0 + group + s(time, by = group))) fit <- suppressWarnings(fitGrowth(ss)) expect_s3_class(fit, "gam") p <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) expect_s3_class(p, "ggplot") p2 <- gam_diff( model = fit, g1 = "a", g2 = "b", plot = TRUE ) expect_s3_class(p2$plot, "ggplot") av <- testGrowth(ss = ss, fit)$anova expect_s3_class(av, "anova") }) test_that("Test gam brms model setup", { ss <- growthSS( model = "gam", form = y ~ time | id / group, sigma = "homo", df = gomp_df, type = "brms" ) expect_s3_class(ss$formula, "brmsformula") }) #* ************************************************************ #* ******************** `decay modeling` ******************** #* ************************************************************ test_that("Test logistic decay", { df <- simdf <- growthSim("logistic decay", n = 20, t = 25, params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5)) ) ss <- growthSS( model = "logistic decay", form = y ~ time | id / group, sigma = "none", df = simdf, start = NULL, type = "nlme" ) fit <- fitGrowth(ss) expect_s3_class(fit, "lme") ss <- growthSS( model = "logistic decay", form = y ~ time | id / group, sigma = "none", df = simdf, start = NULL, type = "nls" ) fit <- fitGrowth(ss) expect_s3_class(fit, "nls") ss <- growthSS( model = "logistic decay", form = y ~ time | id / group, sigma = "none", df = simdf, start = NULL, type = "nlrq" ) fit <- fitGrowth(ss) expect_s3_class(fit, "nlrq") }) #* ************************************************************ #* ******************** `time-to-event modeling` ******************** #* ************************************************************ test_that("Test survreg", { model <- "survival weibull" form <- y > 100 ~ time | id / group df <- growthSim("logistic", n = 20, t = 25, params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5)) ) ss <- growthSS(model = model, form = form, df = df, type = "survreg") fit <- fitGrowth(ss) expect_s3_class(fit, "survreg") p <- growthPlot(fit, form = ss$pcvrForm, df = ss$df) expect_s3_class(p, "ggplot") test <- testGrowth(ss, fit) expect_s3_class(test, "survdiff") }) #* ************************************************************ #* *************** `Models with Intercepts` *************** #* ************************************************************ set.seed(123) logistic_df <- growthSim("logistic", n = 20, t = 25, params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5)) ) logistic_df$y <- logistic_df$y + 20 test_that("Test Intercept Logistic nls modeling", { ss <- suppressMessages(growthSS( model = "int_logistic", form = y ~ time | id / group, df = logistic_df, type = "nls" )) fit <- fitGrowth(ss) expect_s3_class(fit, "nls") nls_p <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) + ggplot2::labs(title = "nls") expect_s3_class(nls_p, "ggplot") test_res <- testGrowth(ss, fit, test = "A")$anova expect_s3_class(test_res, "anova") test_res <- testGrowth(ss, fit, test = list("A1 - A2 *1.1", "(B1+1) - B2", "C1 - (C2-0.5)")) expect_equal(dim(test_res), c(3, 5)) }) test_that("Test Intercept Logistic nlrq modeling", { ss <- suppressMessages(growthSS( model = "int_logistic", form = y ~ time | id / group, df = logistic_df, type = "nlrq", tau = 0.5 )) fit <- fitGrowth(ss) expect_s3_class(fit, "nlrq") nlrq_p <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) + ggplot2::labs(title = "nlrq") expect_s3_class(nlrq_p, "ggplot") }) test_that("Test Intercept Logistic nlme modeling", { ss <- growthSS( model = "int_logistic", form = y ~ time | id / group, sigma = "power", df = logistic_df, type = "nlme" ) fit <- suppressWarnings(fitGrowth(ss)) expect_s3_class(fit, "nlme") nlme_p <- growthPlot(fit = fit, form = ss$pcvrForm, df = ss$df) nlme_p <- nlme_p + ggplot2::labs(title = "nlme") expect_s3_class(nlme_p, "ggplot") test_res <- suppressWarnings(testGrowth(ss, fit, test = "A")$anova) expect_s3_class(test_res, "anova.lme") test_res <- testGrowth(fit = fit, test = list( "A.groupa - A.groupb *1.1", "(B.groupa+1) - B.groupb", "C.groupa - (C.groupb-0.5)" )) expect_equal(dim(test_res), c(3, 5)) }) test_that("Test Intercept Monomolecular nls modeling", { set.seed(123) simdf <- growthSim( "monomolecular", n = 20, t = 25, params = list("A" = c(200, 160), "B" = c(0.08, 0.1)) ) simdf$y <- simdf$y + ifelse(simdf$group == "a", 10, 15) ss <- growthSS( model = "int_monomolecular", form = y ~ time | id / group, df = simdf, start = NULL, type = "nls" ) fit <- fitGrowth(ss) expect_s3_class(fit, "nls") }) test_that("Test Intercept linear nls modeling", { set.seed(123) simdf <- growthSim( "linear", n = 20, t = 25, params = list("A" = c(3, 4)) ) simdf$y <- simdf$y + ifelse(simdf$group == "a", 10, 15) ss <- growthSS( model = "int_linear", form = y ~ time | id / group, df = simdf, start = NULL, type = "nls" ) fit <- fitGrowth(ss) coef(fit) expect_s3_class(fit, "nls") }) #* ************************************************************ #* *************** `Dose-Response modeling` *************** #* ************************************************************ test_that("Test Bragg in nls", { set.seed(123) simdf <- growthSim( "bragg", n = 20, t = 100, list("A" = c(10, 15), "B" = c(0.01, 0.02), "C" = c(50, 60)) ) ss <- growthSS( model = "bragg", form = y ~ time | id / group, df = simdf, start = NULL, type = "nls" ) fit <- fitGrowth(ss) coef(fit) expect_s3_class(fit, "nls") }) test_that("Test Bragg specification (not fitting) in nlme", { set.seed(123) simdf <- growthSim( "bragg", n = 20, t = 100, list("A" = c(10, 15), "B" = c(0.01, 0.02), "C" = c(50, 60)) ) ss <- growthSS( model = "bragg", form = y ~ time | id / group, df = simdf, start = NULL, type = "nlme" ) expect_type(ss$formula, "list") }) test_that("Test lorentz in nls", { set.seed(123) simdf <- growthSim( "lorentz", n = 20, t = 100, list("A" = c(10, 15), "B" = c(0.01, 0.02), "C" = c(50, 60)) ) ss <- growthSS( model = "lorentz", form = y ~ time | id / group, df = simdf, start = NULL, type = "nls" ) fit <- fitGrowth(ss) coef(fit) expect_s3_class(fit, "nls") }) test_that("Test lorentz specification (not fitting) in nlme", { set.seed(123) simdf <- growthSim( "lorentz", n = 20, t = 100, list("A" = c(10, 15), "B" = c(0.01, 0.02), "C" = c(50, 60)) ) ss <- growthSS( model = "lorentz", form = y ~ time | id / group, df = simdf, start = NULL, type = "nlme" ) expect_type(ss$formula, "list") })