test_that("pclspiar() is ok", { ts1 <- window(dataFranses1996[ , "CanadaUnemployment"], start = c(1960, 1), end = c(1987, 4)) test_piar(ts1, 4, 1, sintercept = TRUE) pcTest(ts1, "piar", 4, 1, sintercept = TRUE) # same test_piar(ts1, 4, 1, sintercept = TRUE, sslope = TRUE) test_piar(ts1, 4, 1) test_piar(ts1, 4, 1, homoschedastic = TRUE) parcoef <- rbind(c(0.5, -0.06), c(0.6, -0.08), c(0.7, -0.1), c(0.2, 0.15) ) picoef1 <- c(0.8, 1.25, 2, 0.5) parcoef2 <- pi1ar2par(picoef1, parcoef) picoef2 <- c(4, 0.25, 5, 0.2) coefper2I2 <- pi1ar2par(picoef2, parcoef2) expect_identical(coefper2I2, piar2par(picoef2, parcoef2)) expect_identical(coefper2I2, piar2par(matrix(picoef2, ncol = 1), parcoef2)) ## from examples for "pcTest-methods" cu <- pcts(dataFranses1996[ , "CanadaUnemployment"]) cu <- window(cu, start = availStart(cu), end = availEnd(cu)) test_piar(cu, 4, 1, sintercept = TRUE) pcTest(cu, "piar", 4, 1, sintercept = TRUE) pcTest(as.numeric(cu), "piar", 4, 1, sintercept = TRUE) ## if(require(partsm)){ ## ## same with LRurpar.test from partsm ## LRurpar.test(cu, list(regular = c(0,0,0), seasonal = c(1,0), regvar = 0), p = 1) ## } pcTest(pcts(nsaauto), "wn") pcTest(pcts(nsaauto), "piar", p = 1) ## tmpslMat <- slMatrix(rnorm(32), period = 4, maxlag = 7) acr <- autocorrelations(pcts(nsaauto), maxlag = 7) acrsl <- slMatrix(as.matrix(acr)) pcTest(acrsl, "pwn", nepoch = nCycles(pcts(nsaauto))) pcTest(acrsl, "periodicity", nepoch = nCycles(pcts(nsaauto))) pcTest(pcts(nsaauto), "pwn", maxlag = 4) pcTest(as.numeric(nsaauto), "pwn", maxlag = 4, nseasons = 4) pcTest(acrsl, "periodicity", nepoch = nCycles(pcts(nsaauto))) pcTest(pcts(nsaauto), "wn") pcTest(pcts(nsaauto), "wn", lag = 3) ## pcTest(matrix(nsaauto, nrow = 4), "wn") pcTest(pcts(datansa), "pwn", maxlag = 4) })