R Under development (unstable) (2024-09-06 r87103 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ## Translate amat as describes in amatType to dagitty object > if(requireNamespace("dagitty")) { + library(pcalg) + library(dagitty) + suppressWarnings(RNGversion("3.5.0")) + doExtras <- pcalg:::doExtras() + + res <- rep(FALSE, 10) + #################### + ## Test DAG 1 + #################### + data(gmG) + n <- nrow (gmG8$x) + V <- colnames(gmG8$x) # labels aka node names + + amat <- wgtMatrix(gmG8$g) + amat[amat != 0] <- 1 + dagitty_dag1 <- pcalg2dagitty(amat,V,type="dag") + ## Use dagitty:::graphLayout instead of just graphLayout + ## because Rgraphviz package that R uses has a function w the same name + ## par(mfrow=c(1,2)) + ## plot(gmG8$g, main = "True DAG") + ## plot(dagitty:::graphLayout(dagitty_dag1)) + + res[1] <- (dagitty_dag1 == "dag {\nAuthor\nBar\nCtrl\nGoal\nV5\nV6\nV7\nV8\nAuthor -> Bar\nAuthor -> V6\nAuthor -> V8\nBar -> Ctrl\nBar -> V5\nV5 -> V6\nV5 -> V8\nV6 -> V7\n}\n") + + ############# + ## Test DAG 2 + ############# + set.seed(123) + p <- 10 + V <- sample(LETTERS, p) + g <- pcalg::randomDAG(p,prob=0.3, V = V) + + amat <- wgtMatrix(g) + amat[amat != 0] <- 1 + dagitty_dag2 <- pcalg2dagitty(amat,V,type="dag") + ## Use dagitty:::graphLayout instead of just graphLayout + ## because Rgraphviz package that R uses has a function w the same name + ## par(mfrow=c(1,2)) + ## plot(g, main = "True DAG") + ## plot(dagitty:::graphLayout(dagitty_dag2)) + + res[2] <- (dagitty_dag2 == "dag {\nA\nH\nJ\nK\nQ\nT\nU\nW\nX\nZ\nA -> Q\nH -> A\nH -> K\nH -> Q\nH -> T\nH -> Z\nJ -> W\nT -> A\nT -> Q\nT -> X\nU -> Q\nU -> W\nU -> X\nW -> K\n}\n") + + ############### + ## Test CPDAG 1 + ############### + data(gmG) + n <- nrow(gmG8$ x) + V <- colnames(gmG8$ x) # labels aka node names + + ## estimate CPDAG + pc.fit <- pc(suffStat = list(C = cor(gmG8$x), n = n), + indepTest = gaussCItest, ## indep.test: partial correlations + alpha=0.01, labels = V, verbose = FALSE) + amat <- as(pc.fit, "amat") + dagitty_cpdag1 <- pcalg2dagitty(amat,V,type="cpdag") + ## Use dagitty:::graphLayout instead of just graphLayout + ## because Rgraphviz package that R uses has a function w the same name + ## par(mfrow = c(1,2)) + ## plot(pc.fit) + ## plot(dagitty:::graphLayout(dagitty_cpdag1)) + + res[3] <- (dagitty_cpdag1 == "pdag {\nAuthor\nBar\nCtrl\nGoal\nV5\nV6\nV7\nV8\nAuthor -- Bar\nAuthor -> V6\nAuthor -> V8\nBar -- Ctrl\nBar -> V5\nV5 -> V6\nV5 -> V8\nV6 -> V7\n}\n") + + stopifnot(all(res[1:3])) + + if (doExtras) { + ############# + ## Test CPDAG 2 + ############# + set.seed(135) + p <- 10 + V <- sample(LETTERS, p) + g <- dag2cpdag(pcalg::randomDAG(p,prob=0.3, V = V)) + + amat <- wgtMatrix(g) + amat[amat != 0] <- 1 + dagitty_cpdag2 <- pcalg2dagitty(amat,V,type="cpdag") + ## Use dagitty:::graphLayout instead of just graphLayout + ## because Rgraphviz package that R uses has a function w the same name + ## par(mfrow=c(1,2)) + ## plot(g) + ## plot(dagitty:::graphLayout(dagitty_cpdag2)) + + res[4] <- (dagitty_cpdag2 == "pdag {\nA\nB\nH\nI\nJ\nK\nO\nS\nV\nX\nA -- I\nA -- J\nA -- V\nA -> B\nA -> O\nH -- I\nH -> B\nI -> B\nJ -- K\nK -> B\nS -- X\nS -> O\nV -> B\n}\n") + + ############# + ## Test MAG 1 + ############# + amat <- matrix(c(0,2,0,0, 2,0,3,3, 0,2,0,3, 0,2,2,0), 4,4) + V <- LETTERS[1:4] + colnames(amat) <- rownames(amat) <- V + ## plotAG(amat) + dagitty_mag1 <- pcalg2dagitty(amat,V,type="mag") + res[5] <- (dagitty_mag1 == "mag {\nA\nB\nC\nD\nA <-> B\nB -> C\nB -> D\nC -> D\n}\n") + + ############# + ## Test MAG 2 + ############# + set.seed(78) + p <- 8 + g <- pcalg::randomDAG(p, prob = 0.4) + ## Compute the true covariance and then correlation matrix of g: + true.corr <- cov2cor(trueCov(g)) + + ## define nodes 2 and 6 to be latent variables + L <- c(2,6) + + ## Find PAG + ## As dependence "oracle", we use the true correlation matrix in + ## gaussCItest() with a large "virtual sample size" and a large alpha: + true.pag <- dag2pag(suffStat = list(C= true.corr, n= 10^9), + indepTest= gaussCItest, graph=g, L=L, alpha= 0.9999) + + ## find a valid MAG such that no additional edges are directed into + (amat <- pag2magAM(true.pag@amat, 4)) # -> the adj.matrix of the MAG + ## plotAG(amat) + V <- colnames(amat) + dagitty_mag2 <- pcalg2dagitty(amat,V,type="mag") + res[6] <- (dagitty_mag2 == "mag {\n1\n2\n3\n4\n5\n6\n1 -> 4\n1 -> 5\n1 -> 6\n2 -> 5\n3 -> 4\n3 -> 6\n4 -> 5\n4 -> 6\n5 <-> 6\n}\n") + + ############# + ## Test PAG 1 + ############# + mFig4b <- matrix(c(0,0,1,0,0,0, 0,0,1,0,0,0, 2,2,0,0,3,2, + 0,0,0,0,2,2, 0,0,2,3,0,2, 0,0,2,3,2,0), 6,6) + V <- c("V1", "V2", "X", "Y", "V4", "V3") + colnames(mFig4b) <- rownames(mFig4b) <- V + ## plotAG(mFig4b) + + dagitty_pag1 <- pcalg2dagitty(mFig4b,V,type="pag") + ## Use dagitty:::graphLayout instead of just graphLayout + ## because Rgraphviz package that R uses has a function w the same name + ## par(mfrow=c(1,2)) + ## plot(g) + ## plot(dagitty:::graphLayout(dagitty_cpdag2)) + + res[7] <- (dagitty_pag1 == "pag {\nV1\nV2\nV3\nV4\nX\nY\nV1 @-> X\nV2 @-> X\nV3 -> Y\nV3 <-> V4\nV3 <-> X\nV4 -> Y\nX -> V4\n}\n") + + ############# + ## Test PAG 2 + ############# + set.seed(42) + p <- 7 + ## generate and draw random DAG : + myDAG <- pcalg::randomDAG(p, prob = 0.4) + + ## find skeleton and PAG using the FCI algorithm + suffStat <- list(C = cov2cor(trueCov(myDAG)), n = 10^9) + fm <- fci(suffStat, indepTest=gaussCItest, + alpha = 0.9999, p=p, doPdsep = FALSE) + + amat <- as(fm, "amat") + V <- colnames(amat) + dagitty_pag2 <- pcalg2dagitty(amat,V,type="pag") + + res[8] <- (dagitty_pag2 == "pag {\n1\n2\n3\n4\n5\n6\n7\n1 -> 7\n1 @-> 5\n1 @-> 6\n1 @-@ 3\n2 -> 7\n2 @-> 5\n2 @-> 6\n3 -> 7\n3 @-> 5\n3 @-> 6\n3 @-@ 4\n4 @-> 6\n5 @-> 7\n6 -> 7\n}\n") + + ################# + ## Test empty DAG + ################# + set.seed(123) + p <- 10 + V <- sample(LETTERS, p) + g <- pcalg::randomDAG(p,prob=0, V = V) + + amat <- wgtMatrix(g) + amat[amat != 0] <- 1 + dagitty_dagE <- pcalg2dagitty(amat,V,type="dag") + ## Use dagitty:::graphLayout instead of just graphLayout + ## because Rgraphviz package that R uses has a function w the same name + ## par(mfrow=c(1,2)) + ## plot(g, main = "True DAG") + ## plot(dagitty:::graphLayout(dagitty_dagE)) + + res[9] <- (dagitty_dagE == "dag {\nA\nH\nJ\nK\nQ\nT\nU\nW\nX\nZ\n\n}\n") + + ################# + ## Test empty PAG + ################# + set.seed(42) + p <- 7 + ## generate and draw random DAG : + myDAG <- pcalg::randomDAG(p, prob = 0) + + ## find skeleton and PAG using the FCI algorithm + suffStat <- list(C = cov2cor(trueCov(myDAG)), n = 10^9) + fm <- fci(suffStat, indepTest=gaussCItest, + alpha = 0.9999, p=p, doPdsep = FALSE) + + amat <- as(fm, "amat") + V <- colnames(amat) + dagitty_pagE <- pcalg2dagitty(amat,V,type="pag") + + res[10] <- (dagitty_pagE == "pag {\n1\n2\n3\n4\n5\n6\n7\n\n}\n") + + stopifnot(all(res)) + + ######################################################## + ## Test via comparison of gac() and isAdjustmentSet() ## + ######################################################## + gacVSdagitty <- function(amat, x, y ,z, V, type) { + ## x,y,z: col positions as used in GAC + ## Result: TRUE is result is equal + typeDG <- switch(type, + dag = "dag", + cpdag = "cpdag", + mag = "mag", + pag = "pag") + + dgRes <- pcalg2dagitty(amat, V, type = typeDG) + Exp <- V[x]; Out <- V[y]; Z <- V[z] + gacRes <- gac(amat,x,y, z, type)$gac + dgRes <- dagitty::isAdjustmentSet(x = dgRes, Z = Z, exposure = Exp, outcome = Out) + (gacRes == dgRes) + } + + ## CPDAG 1: Paper Fig 1 + ## mFig1 <- matrix(c(0,1,1,0,0,0, 1,0,1,1,1,0, 0,0,0,0,0,1, + ## 0,1,1,0,1,1, 0,1,0,1,0,1, 0,0,0,0,0,0), 6,6) + ## V <- as.character(1:nrow(mFig1)) + ## colnames(mFig1) <- rownames(mFig1) <- V + + ## typeGAC <- "cpdag" + ## x <- 3; y <- 6 + ## z <- c(2,4); gacVSdagitty(amat = mFig1, x=x, y=y, z=z, V=V, type=typeGAC) + ## z <- c(4,5); gacVSdagitty(amat = mFig1, x=x, y=y, z=z, V=V, type=typeGAC) + ## z <- c(4,2,1); gacVSdagitty(amat = mFig1, x=x, y=y, z=z, V=V, type=typeGAC) + ## z <- c(4,5,1); gacVSdagitty(amat = mFig1, x=x, y=y, z=z, V=V, type=typeGAC) + ## z <- c(4,2,5); gacVSdagitty(amat = mFig1, x=x, y=y, z=z, V=V, type=typeGAC) + ## z <- c(4,2,5,1); gacVSdagitty(amat = mFig1, x=x, y=y, z=z, V=V, type=typeGAC) + ## z <- 2; gacVSdagitty(amat = mFig1, x=x, y=y, z=z, V=V, type=typeGAC) + ## z <- NULL; gacVSdagitty(amat = mFig1, x=x, y=y, z=z, V=V, type=typeGAC) + + xx <- TRUE + ################################################## + ## DAG / CPDAG + ################################################## + ## CPDAG 1: Paper Fig 1 + mFig1 <- matrix(c(0,1,1,0,0,0, 1,0,1,1,1,0, 0,0,0,0,0,1, + 0,1,1,0,1,1, 0,1,0,1,0,1, 0,0,0,0,0,0), 6,6) + type <- "cpdag" + x <- 3; y <- 6 + + V <- as.character(1:ncol(mFig1)) + rownames(mFig1) <- colnames(mFig1) <- V + + xx <- xx & gacVSdagitty(mFig1,x,y, z=c(2,4), V=V, type) + xx <- xx & gacVSdagitty(mFig1,x,y, z=c(4,5), V=V, type) + xx <- xx & gacVSdagitty(mFig1,x,y, z=c(4,2,1), V=V, type) + xx <- xx & gacVSdagitty(mFig1,x,y, z=c(4,5,1), V=V, type) + xx <- xx & gacVSdagitty(mFig1,x,y, z=c(4,2,5), V=V, type) + xx <- xx & gacVSdagitty(mFig1,x,y, z=c(4,2,5,1), V=V, type) + xx <- xx & gacVSdagitty(mFig1,x,y, z= 2, V=V, type) + xx <- xx & gacVSdagitty(mFig1,x,y, z= NULL, V=V, type) + + ## CPDAG 2: Paper Fig 5a + mFig5a <- matrix(c(0,1,0,0,0, 1,0,1,0,0, 0,0,0,0,1, 0,0,1,0,0, 0,0,0,0,0), 5,5) + V <- as.character(1:ncol(mFig5a)) + rownames(mFig5a) <- colnames(mFig5a) <- V + + type <- "cpdag" + x <- c(1,5); y <- 4 + xx <- xx & gacVSdagitty(mFig5a, x,y, z=c(2,3), V=V, type) + xx <- xx & gacVSdagitty(mFig5a, x,y, z= 2, V=V, type) + + ## DAG 1 from Marloes' Talk + mMMd1 <- matrix(c(0,1,0,1,0,0, 0,0,1,0,1,0, 0,0,0,0,0,1, + 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0),6,6) + V <- as.character(1:ncol(mMMd1)) + rownames(mMMd1) <- colnames(mMMd1) <- V + + type <- "dag" + x <- 1; y <- 3 + xx <- xx & gacVSdagitty(mMMd1, x,y, z=NULL, V=V, type) + xx <- xx & gacVSdagitty(mMMd1, x,y, z= 2, V=V, type) + xx <- xx & gacVSdagitty(mMMd1, x,y, z= 4, V=V, type) + xx <- xx & gacVSdagitty(mMMd1, x,y, z= 5, V=V, type) + xx <- xx & gacVSdagitty(mMMd1, x,y, z= 6, V=V, type) + xx <- xx & gacVSdagitty(mMMd1, x,y, z=c(4,5), V=V, type) + + ## DAG 2 from Marloes' Talk + mMMd2 <- matrix(c(0,1,0,1,0,0, 0,0,0,0,0,0, 0,1,0,0,1,0, + 0,0,0,0,1,0, 0,0,0,0,0,1, 0,0,0,0,0,0), 6,6) + V <- as.character(1:ncol(mMMd2)) + rownames(mMMd2) <- colnames(mMMd2) <- V + + type <- "dag" + x <- 4; y <- 6 + xx <- xx & gacVSdagitty(mMMd2, x,y, z= 1, V=V, type) + xx <- xx & gacVSdagitty(mMMd2, x,y, z= 3, V=V, type) + xx <- xx & gacVSdagitty(mMMd2, x,y, z= 5, V=V, type) + xx <- xx & gacVSdagitty(mMMd2, x,y, z=c(1,5), V=V, type) + xx <- xx & gacVSdagitty(mMMd2, x,y, z=c(1,2), V=V, type) + xx <- xx & gacVSdagitty(mMMd2, x,y, z=c(1,3), V=V, type) + xx <- xx & gacVSdagitty(mMMd2, x,y, z= 2, V=V, type) + + ################################################## + ## PAG + ################################################## + type <- "pag" + mFig3a <- matrix(c(0,1,0,0, 1,0,1,1, 0,1,0,1, 0,1,1,0), 4,4) + V <- as.character(1:ncol(mFig3a)) + rownames(mFig3a) <- colnames(mFig3a) <- V + xx <- xx & gacVSdagitty(mFig3a, x=2, y=4, z=NULL, V=V, type) + + mFig3b <- matrix(c(0,2,0,0, 3,0,3,3, 0,2,0,3, 0,2,2,0), 4,4) + V <- as.character(1:ncol(mFig3b)) + rownames(mFig3b) <- colnames(mFig3b) <- V + xx <- xx & gacVSdagitty(mFig3b, x=2, y=4, z=NULL, V=V, type) + + mFig3c <- matrix(c(0,3,0,0, 2,0,3,3, 0,2,0,3, 0,2,2,0), 4,4) + V <- as.character(1:ncol(mFig3c)) + rownames(mFig3c) <- colnames(mFig3c) <- V + xx <- xx & gacVSdagitty(mFig3c, x=2, y=4, z=NULL, V=V, type) + + mFig4a <- matrix(c(0,0,1,0,0,0, 0,0,1,0,0,0, 2,2,0,3,3,2, + 0,0,2,0,2,2, 0,0,2,1,0,2, 0,0,1,3,3,0), 6,6) + V <- as.character(1:ncol(mFig4a)) + rownames(mFig4a) <- colnames(mFig4a) <- V + xx <- xx & gacVSdagitty(mFig4a, x=3, y=4, z=NULL, V=V, type) + xx <- xx & gacVSdagitty(mFig4a, x=3, y=4, z= 6, V=V, type) + xx <- xx & gacVSdagitty(mFig4a, x=3, y=4, z=c(1,6), V=V, type) + xx <- xx & gacVSdagitty(mFig4a, x=3, y=4, z=c(2,6), V=V, type) + xx <- xx & gacVSdagitty(mFig4a, x=3, y=4, z=c(1,2,6), V=V, type) + + mFig4b <- matrix(c(0,0,1,0,0,0, 0,0,1,0,0,0, 2,2,0,0,3,2, + 0,0,0,0,2,2, 0,0,2,3,0,2, 0,0,2,3,2,0), 6,6) + V <- as.character(1:ncol(mFig4b)) + rownames(mFig4b) <- colnames(mFig4b) <- V + xx <- xx & gacVSdagitty(mFig4b, x=3, y=4, z=NULL, V=V, type) + xx <- xx & gacVSdagitty(mFig4b, x=3, y=4, z= 6, V=V, type) + xx <- xx & gacVSdagitty(mFig4b, x=3, y=4, z=c(5,6), V=V, type) + + mFig5b <- matrix(c(0,1,0,0,0,0,0, 2,0,2,3,0,3,0, 0,1,0,0,0,0,0, 0,2,0,0,3,0,0, + 0,0,0,2,0,2,3, 0,2,0,0,2,0,0, 0,0,0,0,2,0,0), 7,7) + V <- as.character(1:ncol(mFig5b)) + rownames(mFig5b) <- colnames(mFig5b) <- V + xx <- xx & gacVSdagitty(mFig5b, x=c(2,7), y=6, z=NULL, V=V, type) + xx <- xx & gacVSdagitty(mFig5b, x=c(2,7), y=6, z=c(4,5), V=V, type) + xx <- xx & gacVSdagitty(mFig5b, x=c(2,7), y=6, z=c(4,5,1), V=V, type) + xx <- xx & gacVSdagitty(mFig5b, x=c(2,7), y=6, z=c(4,5,3), V=V, type) + xx <- xx & gacVSdagitty(mFig5b, x=c(2,7), y=6, z=c(1,3,4,5), V=V, type) + + ## PAG in Marloes' talk + mMMp <- matrix(c(0,0,0,3,2,0,0, 0,0,0,0,1,0,0, 0,0,0,0,1,0,0, 2,0,0,0,0,3,2, + 3,2,2,0,0,0,3, 0,0,0,2,0,0,0, 0,0,0,2,2,0,0), 7,7) + V <- as.character(1:ncol(mMMp)) + rownames(mMMp) <- colnames(mMMp) <- V + + x <- c(5,6); y <- 7 + xx <- xx & gacVSdagitty(mMMp, x,y, z=NULL, V=V, type) + xx <- xx & gacVSdagitty(mMMp, x,y, z= 1, V=V, type) + xx <- xx & gacVSdagitty(mMMp, x,y, z= 4, V=V, type) + xx <- xx & gacVSdagitty(mMMp, x,y, z= 2, V=V, type) + xx <- xx & gacVSdagitty(mMMp, x,y, z= 3, V=V, type) + xx <- xx & gacVSdagitty(mMMp, x,y, z=c(2,3), V=V, type) + xx <- xx & gacVSdagitty(mMMp, x,y, z=c(1,4), V=V, type) + xx <- xx & gacVSdagitty(mMMp, x,y, z=c(1,4,2), V=V, type) + xx <- xx & gacVSdagitty(mMMp, x,y, z=c(1,4,3), V=V, type) + xx <- xx & gacVSdagitty(mMMp, x,y, z=c(1,4,2,3), V=V, type) + + ################################################## + ## V=V, type = "pag" -- Tests from Ema + ################################################## + type <- "pag" + pag.m <- readRDS(system.file("external/gac-pags.rds", package="pcalg")) + m1 <- pag.m[["m1"]] + V <- colnames(m1) + x <- 6; y <- 9 + xx <- xx & gacVSdagitty(m1,x,y, z=NULL, V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=1, V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=2, V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=3, V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=4, V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=c(2,3), V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=c(2,3,8), V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=c(2,3,7,8), V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=c(2,3,5,8), V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=c(2,3,5,7,8), V=V, type) + + x <- c(6,8); y <- 9 + xx <- xx & gacVSdagitty(m1,x,y, z=NULL, V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=1, V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=2, V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=3, V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=4, V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=c(2,3), V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=c(2,3,4), V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=c(2,3,7), V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=c(2,3,5), V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=c(2,3,5,7), V=V, type) + + x <- 3; y <- 1 + xx <- xx & gacVSdagitty(m1,x,y, z=NULL, V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=2, V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=4, V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=5, V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=6, V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=c(2,6), V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=c(2,8), V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=c(2,7,8), V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=c(2,5,8), V=V, type) + xx <- xx & gacVSdagitty(m1,x,y, z=c(2,5,7,8), V=V, type) + + m2 <- pag.m[["m2"]] + V <- colnames(m2) + x <- 3; y <-1 + xx <- xx & gacVSdagitty(m2,x,y, z=NULL, V=V, type) + xx <- xx & gacVSdagitty(m2,x,y, z=2, V=V, type) + xx <- xx & gacVSdagitty(m2,x,y, z=4, V=V, type) + xx <- xx & gacVSdagitty(m2,x,y, z=c(2,8), V=V, type) + xx <- xx & gacVSdagitty(m2,x,y, z=8, V=V, type) + xx <- xx & gacVSdagitty(m2,x,y, z=9, V=V, type) + xx <- xx & gacVSdagitty(m2,x,y, z=c(2,8,9), V=V, type) + xx <- xx & gacVSdagitty(m2,x,y, z=c(2,5), V=V, type) + + x <- c(3,9); y <- 1 + xx <- xx & gacVSdagitty(m2,x,y, z=NULL, V=V, type) + xx <- xx & gacVSdagitty(m2,x,y, z=2, V=V, type) + xx <- xx & gacVSdagitty(m2,x,y, z=4, V=V, type) + xx <- xx & gacVSdagitty(m2,x,y, z=c(2,8), V=V, type) + xx <- xx & gacVSdagitty(m2,x,y, z=8, V=V, type) + xx <- xx & gacVSdagitty(m2,x,y, z=9, V=V, type) + xx <- xx & gacVSdagitty(m2,x,y, z=c(2,8,9), V=V, type) + xx <- xx & gacVSdagitty(m2,x,y, z=c(2,5), V=V, type) + + m3 <- pag.m[["m3"]] + V <- colnames(m3) + x <- 1; y <- 9 + xx <- xx & gacVSdagitty(m3,x,y, z=NULL, V=V, type) + xx <- xx & gacVSdagitty(m3,x,y, z=2, V=V, type) + xx <- xx & gacVSdagitty(m3,x,y, z=3, V=V, type) + xx <- xx & gacVSdagitty(m3,x,y, z=5, V=V, type) + xx <- xx & gacVSdagitty(m3,x,y, z=7, V=V, type) + xx <- xx & gacVSdagitty(m3,x,y, z=8, V=V, type) + xx <- xx & gacVSdagitty(m3,x,y, z=c(2,3), V=V, type) + xx <- xx & gacVSdagitty(m3,x,y, z=c(5,7), V=V, type) + + x <- 1; y <- 8 + xx <- xx & gacVSdagitty(m3,x,y, z=NULL, V=V, type) + xx <- xx & gacVSdagitty(m3,x,y, z=2, V=V, type) + xx <- xx & gacVSdagitty(m3,x,y, z=3, V=V, type) + xx <- xx & gacVSdagitty(m3,x,y, z=5, V=V, type) + xx <- xx & gacVSdagitty(m3,x,y, z=7, V=V, type) + xx <- xx & gacVSdagitty(m3,x,y, z=9, V=V, type) + xx <- xx & gacVSdagitty(m3,x,y, z=c(2,3), V=V, type) + xx <- xx & gacVSdagitty(m3,x,y, z=c(5,9), V=V, type) + + if (!xx) { + stop("Problem when testing function gacVSdagitty.") + } else { + message("OK, no issues were found.") + } + } + } Loading required namespace: dagitty Attaching package: 'dagitty' The following object is masked from 'package:pcalg': randomDAG > > proc.time() user system elapsed 1.56 0.18 1.68