R Under development (unstable) (2024-09-06 r87103 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(pcalg) > > ## Create a weighted DAG --- Example from ../man/jointIda.Rd (keep in sync !) > p <- 6 > V <- as.character(1:p) > edL <- list( + "1" = list(edges=c(3,4), weights=c(1.1,0.3)), + "2" = list(edges=c(6), weights=c(0.4)), + "3" = list(edges=c(2,4,6),weights=c(0.6,0.8,0.9)), + "4" = list(edges=c(2),weights=c(0.5)), + "5" = list(edges=c(1,4),weights=c(0.2,0.7)), + "6" = NULL) > myDAG <- new("graphNEL", nodes=V, edgeL=edL, edgemode="directed") ## true DAG > myCPDAG <- dag2cpdag(myDAG) ## true CPDAG > covTrue <- trueCov(myDAG) ## true covariance matrix > > n <- 1000 > ## simulate Gaussian data from the true DAG > dat <- if (require("mvtnorm")) { + set.seed(123) + rmvnorm(n, mean=rep(0,p), sigma=covTrue) + } else readRDS(system.file(package="pcalg", "external", "N_6_1000.rds")) Loading required package: mvtnorm > > ## estimate CPDAG -- see help(pc) > suffStat <- list(C = cor(dat), n = n) > pc.fit <- pc(suffStat, indepTest = gaussCItest, p = p, alpha = 0.01, u2pd="relaxed") > > ## Suppose that we know the true CPDAG and covariance matrix > m1 <- jointIda(x.pos=c(1,2), y.pos=6, covTrue, graphEst=myCPDAG, technique="RRC") > m2 <- jointIda(x.pos=c(1,2), y.pos=6, covTrue, graphEst=myCPDAG, technique="MCD") ### MCD needed a bugfix > > ##sorting for comparison > order.m1 <- m1[,order(m1[1,])] > order.m2 <- m2[,order(m2[1,])] > tempres1 <- all( all.equal(order.m1, order.m2) ) > if (!tempres1) stop("There is a mismatch with jointIda RRC and MCD!") > > ## Instead of knowing the true CPDAG, it is enough to know only > ## all jointly valid parent sets of the intervention variables ## to use RRC or MCD > ajv.pasets <- list(list(5, c(3,4)), + list(integer(0), c(3,4)), + list(3, c(3,4))) > m3 <- jointIda(x.pos=c(1,2), y.pos=6, covTrue, all.pasets=ajv.pasets, technique="RRC") > m4 <- jointIda(x.pos=c(1,2), y.pos=6, covTrue, all.pasets=ajv.pasets, technique="MCD") > > ##sorting for comparison > order.m3 <- m3[,order(m3[1,])] > order.m4 <- m4[,order(m4[1,])] > tempres2 <- all( all.equal(order.m3, order.m4) ) > if (!tempres2) stop("There is a mismatch with jointIda RRC and MCD!") > > ## From the true DAG, we can compute the true total joint effects > ## using RRC or MCD > m5 <- jointIda(x.pos=c(1,2),y.pos=6,covTrue,graphEst=myDAG,technique="RRC") > m6 <- jointIda(x.pos=c(1,2),y.pos=6,covTrue,graphEst=myDAG,technique="MCD") > > ##sorting for comparison > order.m5 <- m5[,order(m5[1,])] > order.m6 <- m6[,order(m6[1,])] > tempres3 <- all( all.equal(order.m5, order.m6)) > if (!tempres3) stop("There is a mismatch with jointIda RRC and MCD!") > > ################################################################ > > mTrue <- rbind(c(0,0.99,0.99), c(0.4,0.4,0.4)) > Rnd <- 7 > res1 <- (all(round(order.m1,Rnd) == mTrue) & + all(round(order.m2,Rnd) == mTrue) & + all(round(order.m3,Rnd) == mTrue) & + all(round(order.m4,Rnd) == mTrue) ) > > if(!res1) stop("Test in jointIda: True causal effects were not recovered!") > > > ############################################################################# > > ## jointIda also works when x.pos has length 1 and in the following example > ## it gives the same result as ida() (see Note) > ## > ## When the CPDAG is known > v1 <- sort(round(jointIda(x.pos=1,y.pos=6,covTrue,graphEst=myCPDAG, + technique="RRC"), Rnd)) > v2 <- sort(round(jointIda(x.pos=1,y.pos=6,covTrue,graphEst=myCPDAG, + technique="MCD"), Rnd)) ###EMA MCD problem as above > v3 <- sort(round(ida(x.pos=1,y.pos=6,covTrue,graphEst=myCPDAG, + method="global"), Rnd)) ###EMA there is an issue in v3 with lm.cov ??? i get the error: > > res2 <- (all(v1==v2) & all(v2==v3) & all(v3==v1)) > > if(!res2) stop("Test in jointIda: ida() and jointIda() don't produce the same result!") > > ######################################### > ## test extract parent set > ######################################### > # library(digest) > # > # > # ## compare outputs > # jidaCompare <- function(a,b) { > # digest(a) ## has "integer (0)" > # digest(b) ## has "named integer(0)" > # for (i in 1:length(b)) { > # for (j in 1:length(b[[i]])) { > # if (length(b[[i]][[j]]) == 0) b[[i]][[j]] <- integer(0) > # } > # } > # > # for (i in 1:length(a)) { > # for (j in 1:length(a[[i]])) { > # if (length(a[[i]][[j]]) == 0) a[[i]][[j]] <- integer(0) > # } > # } > # > # all(unique(sort(sapply(a,digest))) == unique(sort(sapply(b,digest)))) > # } > # > # > # ##testing > # ##b[[5]] > # ##a[[14]] > # > # ##c <- a[[14]] > # ##c2 <- b[[5]] > # > # ###testing > # ## possible_p <- c(seq(20,100,by=10)) > # possible_p <- c(seq(20,50,by=5)) > # > # ## possible_neighb_size <- c(3:15) > # ## possible_neighb_size <- c(3:10) > # possible_neighb_size <- c(3:8) > # > # ## or choose prob and generate neighborhood size > # possible_prob <- seq(0.1,0.6,by=0.1) > # > # ##for function msep > # > # ##for joint IDA MCD: > # ##if you want to run locally set nc to 1!! > # nc <- 1 > # registerDoParallel(nc) ## Request nc processors in parallel > # num_setings <-20 > # num_rep <- 5 > # > # ##amount of bg knowledge in percent > # p_bg <- seq(0,1,by=0.1) > # > # ## start.time <- Sys.time() > # > # seed1 <- 1 > # resFin <- foreach(r=seed1: num_setings, .packages = 'pcalg') %dopar%{ > # set.seed(r) > # ##Then we can choose one setting: > # > # p <- sample(possible_p,1) > # neigh <- sample(possible_neighb_size,1) > # prob <- round(neigh/(p-1),3) > # res <- rep(FALSE, num_rep) > # > # cat("r=",r,", p=",p,", nb=",neigh,"\n") > # > # ## then for every setting selected we can generate i.e. 20 graph > # for (d in 1: num_rep){ > # ##i left the seed inside for now > # ## i am not sure which seed option makes it easier for us > # ## feel free to move this around > # #seed <- sample(possible_seed,1) > # #set.seed(seed) > # > # ##get graph > # g <- pcalg:::randomDAG(p, prob) ## true DAG > # cpdag <- dag2cpdag(g) ## true CPDAG > # > # ## get adjacency matrix > # cpdag.amat <- t(as(cpdag,"matrix")) > # dag.amat <- t(as(g,"matrix")) > # dag.amat[dag.amat != 0] <- 1 > # > # ############################# > # ## ## > # ## NEW CODE STARTS HERE!!! ## > # ## ## > # ############################# > # > # amat.cpdag <- cpdag.amat > # #plot(cpdag) > # x <- sample(p,3) > # > # a <- pcalg:::extract.parent.sets(x,t(amat.cpdag)) ## extract valid joint parent sets using pcalg > # ## b <- extract.parent.sets(x,amat.cpdag) ## and using my own function > # b <- b.extract.parent.sets(x,amat.cpdag) ## and using my own function > # ## cat("l.a=",length(a), " - ","l.b=",length(b),"\n") > # ## cat("jidaCompare:",jidaCompare(a,b),"\n") > # res[d] <- jidaCompare(a,b) > # ##cat(res[d],"\n") > # } > # all(res) > # } > # > # > # stopifnot(all(unlist(resFin))) > # > # print(resFin) > > proc.time() user system elapsed 1.31 0.15 1.46