library(pcalg) # Perform tests with only two DAGs, but with permutations of the vertices # (to check for a bug present till pcalg-2.0.8) n.perm <- 5 set.seed(123) # A: adjacency matrix of DAG; # B: adjacency matrix of CPDAG # Setting 3 by courtesy of Jonas Peters: in pcalg <= 2.0.8, # setting i = 3, k = 3 failed A <- list( matrix(c(0,0,0,0,1, 0,0,1,0,1, 0,0,0,1,0, 0,0,0,0,0, 0,0,0,0,0), 5, 5, byrow = TRUE), matrix(c(0,1,0,0,0, 0,0,0,1,0, 0,0,0,1,0, 0,0,0,0,1, 0,0,0,0,0), 5, 5, byrow = TRUE), matrix(c(0,0,0,0, 1,0,0,0, 1,1,0,0, 1,1,1,0), 4, 4)) B <- list( matrix(c(0,0,0,0,1, 0,0,1,0,1, 0,1,0,1,0, 0,0,1,0,0, 0,0,0,0,0), 5, 5, byrow = TRUE), matrix(c(0,1,0,0,0, 1,0,0,1,0, 0,0,0,1,0, 0,0,0,0,1, 0,0,0,0,0), 5, 5, byrow = TRUE), matrix(c(0,1,1,1, 1,0,1,1, 1,1,0,1, 1,1,1,0), 4, 4)) for (i in 1:length(A)) { for (k in 1:n.perm) { p <- nrow(A[[i]]) ind <- if(k == 1) 1:p else sample.int(p) g <- as(A[[i]][ind, ind], "graphNEL") pdag <- dag2cpdag(g) B.hat <- as(pdag, "matrix") if (!all(B.hat == B[[i]][ind, ind])) { stop(sprintf("True CPDAG not found! (setting: i = %d, k = %d)", i, k)) } # par(mfrow = c(1, 2)) # plot(g) # plot(pdag) } }