## Test file ages library(pcalg) suppressWarnings(RNGversion("3.5.0")) (doExtras <- pcalg:::doExtras()) ## Known example where ges and ages output a different result bool3 <- TRUE set.seed(77) p <- 8 n <- 5000 ## true DAG: vars <- c("Author", "Bar", "Ctrl", "Goal", paste0("V",5:8)) gGtrue <- randomDAG(p, prob = 0.3, V = vars) data = rmvDAG(n, gGtrue) ## Estimate the aggregated PDAG with ages ages.fit <- ages(data = data) ## Estimate the essential graph with ges score <- new("GaussL0penObsScore", data) ges.fit <- ges(score) diff <- as(ges.fit$essgraph,"matrix") - as(ages.fit$essgraph,"matrix") bool3 <- ( bool3 & (diff[6,2]==1) * (diff[8,2]==1) *(sum(abs( as(ges.fit$essgraph,"matrix") - as(ages.fit$essgraph,"matrix") ))==2) ) stopifnot(bool3) if (doExtras) { ## Test 1: Need to make sure that the skeleton of ges and ages are the same bool1 <- TRUE for(i in 1:10){ p <- 20 n <- 5000 ## true DAG: gGtrue <- randomDAG(p, prob = 0.4) data <- rmvDAG(n, gGtrue) score <- new("GaussL0penObsScore", data=data, lambda = 200) ges.fit <- ges(score = score, phase = c("forward", "backward"), iterate = F) ages.fit <- ages(data = data, lambda_min = 200) ges.mat <- as(ges.fit$essgraph,"matrix") ages.mat <- as(ages.fit$essgraph,"matrix") # # ages1mat2 <- ages1[[3]][[length(ages1[[3]])]] bool1 <- ( bool1 & all((((ges.mat + t(ges.mat))!=0)*1)==(((ages.mat + t(ages.mat))!=0)*1)) ) } stopifnot(bool1) ## Test 2: Number of CPDAGs used and number of penalty parameter has to be the same bool2 <- TRUE for(i in 1:10){ p <- 20 n <- 5000 ## true DAG: gGtrue <- randomDAG(p, prob = 0.4) data = rmvDAG(n, gGtrue) agesfit <- ages(data = data, lambda_min = 100) bool2 <- ( bool2 & (length(agesfit$CPDAGsList) == length(agesfit$lambda)) ) } stopifnot(bool2) }