R Under development (unstable) (2024-02-05 r85863 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(pcalg) > (doExtras <- pcalg:::doExtras()) [1] FALSE > > showProc.time <- local({ + pct <- proc.time() + function() { ## CPU elapsed __since last called__ + ot <- pct ; pct <<- proc.time() + cat('Time elapsed: ', (pct - ot)[1:3],'\n') + } + }) > > > ################################################## > ## Standard PC > ################################################## > ##library(RBGL) > nreps <- 10 > > p <- 10 > set.seed(234) > for (ii in 1:nreps) { + ## generate and draw random DAG : + myDAG <- randomDAG(p, prob = 0.3) + myCPDAG <- dag2cpdag(myDAG) + suffStat <- list(C = cov2cor(trueCov(myDAG)), n = 10^9) + res <- pc(suffStat, indepTest=gaussCItest, 0.99, p=p) + if( shd(res, myCPDAG) != 0) + stop("Test pc wrong: CPDAG ",ii," was not found correctly") + } > > showProc.time() Time elapsed: 0.44 0.02 0.45 > > if (doExtras) { + ################################################## + ## Conservative PC + ################################################## + ##PC algorithm sample (compared with Tetrad) + ##__________________________________________________________________________________ + ## Example 1 + p <- 10 + n <- 5000 + set.seed(p*37+15673) + g <- randomDAG(p,2/(p-1)) + + ## generate n samples of DAG using standard normal error distribution + ##random data + + (load(system.file("external", "test_conservative_pc_data1.rda", package = "pcalg"))) + ## set.seed(67*37) + ## new.mat <- rmvnorm(n,mean=rep(0,p),sigma=trueCov(g)) + ## save(new.mat, file = "/u/kalisch/research/packages/pcalg/inst/external/test_conservative_pc_data1.rda") + ## load(file = "/u/kalisch/research/packages/pcalg/inst/external/test_conservative_pc_data1.rda") + + suffStat.data <- list(C=cor(new.mat1),n=n) + + ##pcAlgo conservative sample + dag1 <- pc(suffStat.data, gaussCItest, alpha=0.005, p=p, + u2pd="relaxed", conservative=TRUE) + ##adjacency matrix + dag1.amat <- as(dag1@graph,"matrix") + + ##always save the transpose of the matrix to be loaded in Tetrad + ##write(t(new.mat1),file="test_conservative_pc_data1.txt",ncolumns=p) + + ##check the output with Tetrad + + amat.tetrad1 <- matrix(0,p,p) + amat.tetrad1[1,6] <- 1 + amat.tetrad1[2,4] <- amat.tetrad1[2,6] <- 1 + amat.tetrad1[3,4] <- 1 + amat.tetrad1[4,6] <- amat.tetrad1[4,9] <- 1 + + correctEst1 <- all(dag1.amat == amat.tetrad1) + if (!correctEst1) stop("Test sample conservative PC wrong: example 1!") + showProc.time() + + + ## Example 2 + p <- 12 + n <- 5000 + set.seed(p*67+15673) + g <- randomDAG(p,2/(p-1)) + + ## generate n samples of DAG using standard normal error distribution + ##random data + load(system.file("external", "test_conservative_pc_data2.rda", package = "pcalg")) + ## set.seed(67*67) + ## new.mat <- rmvnorm(n,mean=rep(0,p),sigma=trueCov(g)) + ## save(new.mat, file = "/u/kalisch/research/packages/pcalg/inst/external/test_conservative_pc_data2.rda") + ## load(file = "/u/kalisch/research/packages/pcalg/inst/external/test_conservative_pc_data2.rda") + + suffStat.data <- list(C=cor(new.mat2),n=n) + ## pcAlgo conservative sample + dag2 <- pc(suffStat.data, gaussCItest, alpha=0.005, p=p, + u2pd="relaxed", conservative=TRUE) + + ##adjacency matrix + dag2.amat <- as(dag2@graph,"matrix") + + ##always save the transpose of the matrix to be loaded in Tetrad + ##write(t(new.mat),file="test_conservative_pc_data2.txt",ncolumns=p) + + ##check the output with Tetrad + + amat.tetrad2 <- matrix(0,p,p) + amat.tetrad2[1,2] <- amat.tetrad2[1,7] <- 1 + amat.tetrad2[2,1] <- amat.tetrad2[2,11] <- 1 + amat.tetrad2[3,9] <- amat.tetrad2[3,11] <- amat.tetrad2[3,12] <- 1 + amat.tetrad2[4,5] <- amat.tetrad2[4,11] <- amat.tetrad2[4,12] <- 1 + amat.tetrad2[5,4] <- amat.tetrad2[5,8] <- amat.tetrad2[5,9] <- 1 + amat.tetrad2[7,1] <- 1 + amat.tetrad2[8,5] <- amat.tetrad2[8,12] <- 1 + amat.tetrad2[10,11] <- 1 + + correctEst2 <- all(dag2.amat == amat.tetrad2) + if (!correctEst2) stop("Test sample conservative PC wrong: example 2!") + showProc.time() + + + ##PC algorithm population + ##_____________________________________________________________________________ + ## Example 4 + p <- 15 + set.seed(15673) + g <- randomDAG(p, 2/(p-1)) + + ##population version + suffStat <- list(C=cov2cor(trueCov(g)),n=10^9) + dag4 <- pc(suffStat, gaussCItest, alpha=0.9999, p=p, u2pd="relaxed") + dag5 <- pc(suffStat, gaussCItest, alpha=0.9999, p=p, u2pd="relaxed",conservative=TRUE) + + ##adjacency matrix + dag4.amat <- as(dag4@graph,"matrix") + dag5.amat <- as(dag5@graph,"matrix") + + correctEst4 <- all(dag4.amat == dag5.amat) + if (!correctEst4) stop("Test population conservative PC wrong: example 4!") + showProc.time() + + + ## Example 5 + p <- 25 + set.seed(1589873) + g <- randomDAG(p,2/(p-1)) + + ##population version + suffStat <- list(C=cov2cor(trueCov(g)),n=10^9) + dag6 <- pc(suffStat, gaussCItest, alpha=0.9999, p=p, u2pd="relaxed") + dag7 <- pc(suffStat, gaussCItest, alpha=0.9999, p=p, u2pd="relaxed",conservative=TRUE) + + ##adjacency matrix + dag6.amat <- as(dag6@graph,"matrix") + dag7.amat <- as(dag7@graph,"matrix") + + correctEst5 <- all(dag6.amat == dag7.amat) + if (!correctEst5) stop("Test population conservative PC wrong: example 5!") + showProc.time() + + ## Example 6 + p <- 35 + set.seed(78673) + g <- randomDAG(p,2/(p-1)) + + ##population version + suffStat <- list(C=cov2cor(trueCov(g)),n=10^9) + dag8 <- pc(suffStat, gaussCItest, alpha=0.9999, p=p, u2pd="relaxed") + dag9 <- pc(suffStat, gaussCItest, alpha=0.9999, p=p, u2pd="relaxed", conservative=TRUE) + + ##adjacency matrix + dag8.amat <- as(dag8@graph,"matrix") + dag9.amat <- as(dag9@graph,"matrix") + + correctEst6 <- all(dag8.amat == dag9.amat) + if (!correctEst6) stop("Test population conservative PC wrong: example 6!") + + showProc.time() + } > > ################################################## > ## Test applyOrientationRules > ################################################## > amat <- matrix(c(0, 0, 1, 1, + 1, 0, 1, 1, + 1, 1, 0, 1, + 0, 0, 1, 0), 4, 4, byrow=TRUE) > ### hier gibt es eigentlich nichts mehr zu orientieren; vor bugfix hat aber applyOrientationRules Rule 3 angewendet > amat2 <- t(pcalg:::applyOrientationRules(t(amat), verbose=TRUE)) > stopifnot( all(amat == amat2 )) > > proc.time() user system elapsed 1.29 0.14 1.42