R Under development (unstable) (2023-11-26 r85638 ucrt) -- "Unsuffered Consequences" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > set.seed(290875) > library("party") Loading required package: grid Loading required package: mvtnorm Loading required package: modeltools Loading required package: stats4 Loading required package: strucchange Loading required package: zoo Attaching package: 'zoo' The following objects are masked from 'package:base': as.Date, as.Date.numeric Loading required package: sandwich > if (!require("TH.data")) + stop("cannot load package TH.data") Loading required package: TH.data Loading required package: survival Loading required package: MASS Attaching package: 'TH.data' The following object is masked from 'package:MASS': geyser > if (!require("coin")) + stop("cannot load package coin") Loading required package: coin > > ### get rid of the NAMESPACE > attach(list2env(as.list(asNamespace("party")))) The following objects are masked from package:party: cforest, cforest_classical, cforest_control, cforest_unbiased, conditionalTree, ctree, ctree_control, edge_simple, initVariableFrame, mob, mob_control, node_barplot, node_bivplot, node_boxplot, node_density, node_hist, node_inner, node_scatterplot, node_surv, node_terminal, nodes, party_intern, prettytree, proximity, ptrafo, response, reweight, sctest.mob, treeresponse, varimp, varimpAUC, where > > gtctrl <- new("GlobalTestControl") > tlev <- levels(gtctrl@testtype) > > data(GlaucomaM, package = "TH.data") > gtree <- ctree(Class ~ ., data = GlaucomaM) > tree <- gtree@tree > stopifnot(isequal(tree[[5]][[3]], 0.059)) > predict(gtree) [1] normal normal normal normal normal normal normal normal [9] normal normal normal glaucoma normal normal normal normal [17] normal normal normal normal normal normal normal normal [25] normal normal normal normal normal normal normal normal [33] normal normal glaucoma normal normal normal normal normal [41] normal normal glaucoma normal normal normal normal normal [49] normal normal normal normal normal normal normal normal [57] normal normal normal normal normal normal normal normal [65] normal normal normal normal normal glaucoma normal normal [73] normal normal normal normal normal normal normal normal [81] glaucoma normal normal normal normal normal normal normal [89] normal normal normal normal normal normal normal normal [97] normal normal glaucoma glaucoma glaucoma glaucoma normal normal [105] normal normal normal glaucoma glaucoma normal glaucoma glaucoma [113] glaucoma glaucoma glaucoma glaucoma glaucoma normal normal glaucoma [121] glaucoma glaucoma glaucoma glaucoma glaucoma glaucoma normal glaucoma [129] normal glaucoma normal glaucoma glaucoma glaucoma glaucoma glaucoma [137] glaucoma glaucoma glaucoma glaucoma glaucoma glaucoma glaucoma glaucoma [145] glaucoma glaucoma normal glaucoma glaucoma glaucoma glaucoma normal [153] glaucoma glaucoma glaucoma glaucoma normal glaucoma glaucoma glaucoma [161] glaucoma glaucoma normal normal glaucoma glaucoma normal glaucoma [169] glaucoma glaucoma glaucoma glaucoma normal glaucoma glaucoma glaucoma [177] normal glaucoma normal glaucoma glaucoma glaucoma normal glaucoma [185] glaucoma glaucoma normal glaucoma glaucoma normal glaucoma normal [193] glaucoma glaucoma glaucoma glaucoma Levels: glaucoma normal > > # print(tree) > > stump <- ctree(Class ~ ., data = GlaucomaM, + control = ctree_control(stump = TRUE)) > print(stump) Conditional inference tree with 2 terminal nodes Response: Class Inputs: ag, at, as, an, ai, eag, eat, eas, ean, eai, abrg, abrt, abrs, abrn, abri, hic, mhcg, mhct, mhcs, mhcn, mhci, phcg, phct, phcs, phcn, phci, hvc, vbsg, vbst, vbss, vbsn, vbsi, vasg, vast, vass, vasn, vasi, vbrg, vbrt, vbrs, vbrn, vbri, varg, vart, vars, varn, vari, mdg, mdt, mds, mdn, mdi, tmg, tmt, tms, tmn, tmi, mr, rnf, mdic, emd, mv Number of observations: 196 1) vari <= 0.059; criterion = 1, statistic = 71.475 2)* weights = 87 1) vari > 0.059 3)* weights = 109 > > data(treepipit, package = "coin") > > tr <- ctree(counts ~ ., data = treepipit) > tr Conditional inference tree with 2 terminal nodes Response: counts Inputs: age, coverstorey, coverregen, meanregen, coniferous, deadtree, cbpiles, ivytree, fdist Number of observations: 86 1) coverstorey <= 40; criterion = 0.998, statistic = 13.678 2)* weights = 24 1) coverstorey > 40 3)* weights = 62 > plot(tr) > > > data(GlaucomaM, package = "TH.data") > > tr <- ctree(Class ~ ., data = GlaucomaM) > tr Conditional inference tree with 4 terminal nodes Response: Class Inputs: ag, at, as, an, ai, eag, eat, eas, ean, eai, abrg, abrt, abrs, abrn, abri, hic, mhcg, mhct, mhcs, mhcn, mhci, phcg, phct, phcs, phcn, phci, hvc, vbsg, vbst, vbss, vbsn, vbsi, vasg, vast, vass, vasn, vasi, vbrg, vbrt, vbrs, vbrn, vbri, varg, vart, vars, varn, vari, mdg, mdt, mds, mdn, mdi, tmg, tmt, tms, tmn, tmi, mr, rnf, mdic, emd, mv Number of observations: 196 1) vari <= 0.059; criterion = 1, statistic = 71.475 2) vasg <= 0.066; criterion = 1, statistic = 29.265 3)* weights = 79 2) vasg > 0.066 4)* weights = 8 1) vari > 0.059 5) tms <= -0.066; criterion = 0.951, statistic = 11.221 6)* weights = 65 5) tms > -0.066 7)* weights = 44 > plot(tr) > > data(GBSG2, package = "TH.data") > > GBSG2tree <- ctree(Surv(time, cens) ~ ., data = GBSG2) > GBSG2tree Conditional inference tree with 4 terminal nodes Response: Surv(time, cens) Inputs: horTh, age, menostat, tsize, tgrade, pnodes, progrec, estrec Number of observations: 686 1) pnodes <= 3; criterion = 1, statistic = 56.156 2) horTh == {yes}; criterion = 0.965, statistic = 8.113 3)* weights = 128 2) horTh == {no} 4)* weights = 248 1) pnodes > 3 5) progrec <= 20; criterion = 0.999, statistic = 14.941 6)* weights = 144 5) progrec > 20 7)* weights = 166 > plot(GBSG2tree) > plot(GBSG2tree, terminal_panel = node_surv(GBSG2tree)) > survfit(Surv(time, cens) ~ as.factor(GBSG2tree@where), data = GBSG2) Call: survfit(formula = Surv(time, cens) ~ as.factor(GBSG2tree@where), data = GBSG2) n events median 0.95LCL 0.95UCL as.factor(GBSG2tree@where)=3 128 31 NA 2372 NA as.factor(GBSG2tree@where)=4 248 88 2093 1814 NA as.factor(GBSG2tree@where)=6 144 103 624 525 797 as.factor(GBSG2tree@where)=7 166 77 1701 1174 2018 > names(GBSG2) [1] "horTh" "age" "menostat" "tsize" "tgrade" "pnodes" [7] "progrec" "estrec" "time" "cens" > > tr <- ctree(Surv(time, cens) ~ ., data = GBSG2, + control = ctree_control(teststat = "max", + testtype = "Univariate")) There were 18 warnings (use warnings() to see them) > tr Conditional inference tree with 10 terminal nodes Response: Surv(time, cens) Inputs: horTh, age, menostat, tsize, tgrade, pnodes, progrec, estrec Number of observations: 686 1) pnodes <= 3; criterion = 1, statistic = 7.494 2) horTh == {yes}; criterion = 0.996, statistic = 2.848 3) progrec <= 74; criterion = 0.975, statistic = 2.241 4)* weights = 73 3) progrec > 74 5)* weights = 55 2) horTh == {no} 6) menostat == {Pre}; criterion = 0.978, statistic = 2.286 7) age <= 37; criterion = 1, statistic = 3.858 8)* weights = 21 7) age > 37 9)* weights = 115 6) menostat == {Post} 10)* weights = 112 1) pnodes > 3 11) progrec <= 20; criterion = 1, statistic = 3.865 12) pnodes <= 9; criterion = 0.991, statistic = 2.612 13)* weights = 87 12) pnodes > 9 14)* weights = 57 11) progrec > 20 15) horTh == {yes}; criterion = 0.976, statistic = 2.251 16) menostat == {Pre}; criterion = 0.965, statistic = 2.105 17)* weights = 20 16) menostat == {Post} 18)* weights = 45 15) horTh == {no} 19)* weights = 101 > plot(tr) > > data("mammoexp", package = "TH.data") > attr(mammoexp$ME, "scores") <- 1:3 > attr(mammoexp$SYMPT, "scores") <- 1:4 > attr(mammoexp$DECT, "scores") <- 1:3 > names(mammoexp)[names(mammoexp) == "SYMPT"] <- "symptoms" > names(mammoexp)[names(mammoexp) == "PB"] <- "benefit" > > names(mammoexp) [1] "ME" "symptoms" "benefit" "HIST" "BSE" "DECT" > tr <- ctree(ME ~ ., data = mammoexp) > tr Conditional inference tree with 3 terminal nodes Response: ME Inputs: symptoms, benefit, HIST, BSE, DECT Number of observations: 412 1) symptoms <= Agree; criterion = 1, statistic = 29.933 2)* weights = 113 1) symptoms > Agree 3) benefit <= 8; criterion = 0.988, statistic = 9.17 4)* weights = 208 3) benefit > 8 5)* weights = 91 > plot(tr) > > treeresponse(tr, newdata = mammoexp[1:5,]) [[1]] [1] 0.3990385 0.3798077 0.2211538 [[2]] [1] 0.84070796 0.05309735 0.10619469 [[3]] [1] 0.3990385 0.3798077 0.2211538 [[4]] [1] 0.6153846 0.2087912 0.1758242 [[5]] [1] 0.3990385 0.3798077 0.2211538 > > ### check different user interfaces > data("iris") > x <- as.matrix(iris[,colnames(iris) != "Species"]) > y <- iris[,"Species"] > newx <- x > > ls <- LearningSample(x, y) > p1 <- unlist(treeresponse(ctree(Species ~ ., data = iris), newdata = as.data.frame(newx))) > p2 <- unlist(treeresponse(ctreefit(ls, control = ctree_control()), newdata = as.matrix(newx))) > stopifnot(identical(max(abs(p1 - p2)), 0)) > > set.seed(29) > p1 <- unlist(treeresponse(cforestfit(ls, control = cforest_unbiased(mtry = 1)), newdata = as.matrix(newx))) > set.seed(29) > p2 <- unlist(treeresponse(cforest(Species ~ ., data = iris, control = cforest_unbiased(mtry = 1)), + newdata = as.data.frame(newx))) > stopifnot(identical(max(abs(p1 - p2)), 0)) > > proc.time() user system elapsed 3.68 0.45 4.12