R Under development (unstable) (2023-11-26 r85638 ucrt) -- "Unsuffered Consequences" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > set.seed(290875) > library("party") Loading required package: grid Loading required package: mvtnorm Loading required package: modeltools Loading required package: stats4 Loading required package: strucchange Loading required package: zoo Attaching package: 'zoo' The following objects are masked from 'package:base': as.Date, as.Date.numeric Loading required package: sandwich > > ### get rid of the NAMESPACE > attach(list2env(as.list(asNamespace("party")))) The following objects are masked from package:party: cforest, cforest_classical, cforest_control, cforest_unbiased, conditionalTree, ctree, ctree_control, edge_simple, initVariableFrame, mob, mob_control, node_barplot, node_bivplot, node_boxplot, node_density, node_hist, node_inner, node_scatterplot, node_surv, node_terminal, nodes, party_intern, prettytree, proximity, ptrafo, response, reweight, sctest.mob, treeresponse, varimp, varimpAUC, where > > ### > ### > ### Regression tests for linear statistics, expectations and covariances > ### > ### functions defined in file `./src/LinearStatistics.c' > > ### tests for function C_LinearStatistic > ### Linear Statistics > x = matrix(c(rep.int(1,4), rep.int(0,6)), ncol = 1) > y = matrix(1:10, ncol = 1) > weights = rep(1, 10) > linstat = LinearStatistic(x, y, weights) > stopifnot(isequal(linstat, sum(1:4))) > > weights[1] = 0 > linstat = LinearStatistic(x, y, weights) > stopifnot(isequal(linstat, sum(2:4))) > > xf <- gl(3, 10) > yf <- gl(3, 10)[sample(1:30)] > x <- sapply(levels(xf), function(l) as.numeric(xf == l)) > colnames(x) <- NULL > y <- sapply(levels(yf), function(l) as.numeric(yf == l)) > colnames(y) <- NULL > weights <- sample(1:30) > linstat <- LinearStatistic(x, y, weights) > stopifnot(isequal(linstat, as.vector(t(x) %*% diag(weights) %*% y))) > > xf <- factor(cut(rnorm(6000), breaks = c(-Inf, -2, 0.5, Inf))) > x <- sapply(levels(xf), function(l) as.numeric(xf == l)) > yf <- factor(cut(rnorm(6000), breaks = c(-Inf, -0.5, 1.5, Inf))) > y <- sapply(levels(yf), function(l) as.numeric(yf == l)) > weights <- rep(1, nrow(x)) > colnames(x) <- NULL > colnames(y) <- NULL > weights <- rep(1, 6000) > linstat <- LinearStatistic(x, y, weights) > stopifnot(isequal(as.vector(table(xf, yf)), linstat)) > stopifnot(isequal(as.vector(t(x)%*%y), linstat)) > > > ### tests for function C_ExpectCovarInfluence > eci <- ExpectCovarInfluence(y, weights) > isequal(eci@sumweights, sum(weights)) [1] TRUE > isequal(eci@expectation, drop(weights %*% y / sum(weights))) [1] TRUE > ys <- t(t(y) - eci@expectation) > stopifnot(isequal(eci@covariance, (t(ys) %*% (weights * ys)) / + sum(weights))) > > ### tests for function C_ExpectCovarLinearStatistic > ### Conditional Expectation and Variance (via Kruskal-Wallis statistic) > > ### case 1: p > 1, q = 1 > group <- gl(3, 5) > x <- sapply(levels(group), function(l) as.numeric(group == l)) > y <- matrix(1:15, ncol = 1) > weights <- rep(1, 15) > > linstat <- LinearStatistic(x, y, weights) > expcov <- ExpectCovarLinearStatistic(x, y, weights) > KW <- quadformTestStatistic(linstat, expcov@expectation, expcov@covariance) > kts <- kruskal.test(y ~ group)$statistic > stopifnot(isequal(KW, kts)) > > ### case 2: p = 1, q > 1 > linstat <- LinearStatistic(y, x, weights) > expcov <- ExpectCovarLinearStatistic(y, x, weights) > KW <- quadformTestStatistic(linstat, expcov@expectation, expcov@covariance) > kts <- kruskal.test(y ~ group)$statistic > stopifnot(isequal(KW, kts)) > > ### case 3: p = 1, q = 1 > x <- x[,1,drop = FALSE] > linstat <- LinearStatistic(x, y, weights) > expcov <- ExpectCovarLinearStatistic(x, y, weights) > KW <- quadformTestStatistic(linstat, expcov@expectation, expcov@covariance) > kts <- kruskal.test(y ~ as.factor(x))$statistic > stopifnot(isequal(KW, kts)) > > ### case 4: p > 1, q > 1 via chisq.test > n <- 900 > xf <- gl(3, n / 3) > yf <- gl(3, n / 3)[sample(1:n)] > x <- sapply(levels(xf), function(l) as.numeric(xf == l)) > colnames(x) <- NULL > y <- sapply(levels(yf), function(l) as.numeric(yf == l)) > colnames(y) <- NULL > weights <- rep(1, n) > linstat <- LinearStatistic(x, y, weights) > expcov <- ExpectCovarLinearStatistic(x, y, weights) > chi <- quadformTestStatistic(linstat, expcov@expectation, expcov@covariance) > chis <- chisq.test(table(xf, yf))$statistic > stopifnot(isequal(round(chi, 1), round(chis, 1))) > > ### tests for function C_PermutedLinearStatistic > ### Linear Statistics with permuted indices > x <- matrix(rnorm(100), ncol = 2) > y <- matrix(rnorm(100), ncol = 2) > weights <- rep(1, 50) > indx <- 1:50 > perm <- 1:50 > stopifnot(isequal(LinearStatistic(x, y, weights), + PermutedLinearStatistic(x, y, indx, perm))) > x <- matrix(1:10000, ncol = 2) > y <- matrix(1:10000, ncol = 2) > > for (i in 1:100) { + indx <- sample(1:ncol(y), replace = TRUE) + perm <- sample(1:ncol(y), replace = TRUE) + + stopifnot(isequal(as.vector(t(x[indx,]) %*% y[perm, ]), + PermutedLinearStatistic(x, y, indx, perm))) + } > > proc.time() user system elapsed 1.79 0.45 2.18