set.seed(290875) library("party") ### get rid of the NAMESPACE attach(list2env(as.list(asNamespace("party")))) ### ### ### Regression tests for linear statistics, expectations and covariances ### ### functions defined in file `./src/LinearStatistics.c' ### tests for function C_LinearStatistic ### Linear Statistics x = matrix(c(rep.int(1,4), rep.int(0,6)), ncol = 1) y = matrix(1:10, ncol = 1) weights = rep(1, 10) linstat = LinearStatistic(x, y, weights) stopifnot(isequal(linstat, sum(1:4))) weights[1] = 0 linstat = LinearStatistic(x, y, weights) stopifnot(isequal(linstat, sum(2:4))) xf <- gl(3, 10) yf <- gl(3, 10)[sample(1:30)] x <- sapply(levels(xf), function(l) as.numeric(xf == l)) colnames(x) <- NULL y <- sapply(levels(yf), function(l) as.numeric(yf == l)) colnames(y) <- NULL weights <- sample(1:30) linstat <- LinearStatistic(x, y, weights) stopifnot(isequal(linstat, as.vector(t(x) %*% diag(weights) %*% y))) xf <- factor(cut(rnorm(6000), breaks = c(-Inf, -2, 0.5, Inf))) x <- sapply(levels(xf), function(l) as.numeric(xf == l)) yf <- factor(cut(rnorm(6000), breaks = c(-Inf, -0.5, 1.5, Inf))) y <- sapply(levels(yf), function(l) as.numeric(yf == l)) weights <- rep(1, nrow(x)) colnames(x) <- NULL colnames(y) <- NULL weights <- rep(1, 6000) linstat <- LinearStatistic(x, y, weights) stopifnot(isequal(as.vector(table(xf, yf)), linstat)) stopifnot(isequal(as.vector(t(x)%*%y), linstat)) ### tests for function C_ExpectCovarInfluence eci <- ExpectCovarInfluence(y, weights) isequal(eci@sumweights, sum(weights)) isequal(eci@expectation, drop(weights %*% y / sum(weights))) ys <- t(t(y) - eci@expectation) stopifnot(isequal(eci@covariance, (t(ys) %*% (weights * ys)) / sum(weights))) ### tests for function C_ExpectCovarLinearStatistic ### Conditional Expectation and Variance (via Kruskal-Wallis statistic) ### case 1: p > 1, q = 1 group <- gl(3, 5) x <- sapply(levels(group), function(l) as.numeric(group == l)) y <- matrix(1:15, ncol = 1) weights <- rep(1, 15) linstat <- LinearStatistic(x, y, weights) expcov <- ExpectCovarLinearStatistic(x, y, weights) KW <- quadformTestStatistic(linstat, expcov@expectation, expcov@covariance) kts <- kruskal.test(y ~ group)$statistic stopifnot(isequal(KW, kts)) ### case 2: p = 1, q > 1 linstat <- LinearStatistic(y, x, weights) expcov <- ExpectCovarLinearStatistic(y, x, weights) KW <- quadformTestStatistic(linstat, expcov@expectation, expcov@covariance) kts <- kruskal.test(y ~ group)$statistic stopifnot(isequal(KW, kts)) ### case 3: p = 1, q = 1 x <- x[,1,drop = FALSE] linstat <- LinearStatistic(x, y, weights) expcov <- ExpectCovarLinearStatistic(x, y, weights) KW <- quadformTestStatistic(linstat, expcov@expectation, expcov@covariance) kts <- kruskal.test(y ~ as.factor(x))$statistic stopifnot(isequal(KW, kts)) ### case 4: p > 1, q > 1 via chisq.test n <- 900 xf <- gl(3, n / 3) yf <- gl(3, n / 3)[sample(1:n)] x <- sapply(levels(xf), function(l) as.numeric(xf == l)) colnames(x) <- NULL y <- sapply(levels(yf), function(l) as.numeric(yf == l)) colnames(y) <- NULL weights <- rep(1, n) linstat <- LinearStatistic(x, y, weights) expcov <- ExpectCovarLinearStatistic(x, y, weights) chi <- quadformTestStatistic(linstat, expcov@expectation, expcov@covariance) chis <- chisq.test(table(xf, yf))$statistic stopifnot(isequal(round(chi, 1), round(chis, 1))) ### tests for function C_PermutedLinearStatistic ### Linear Statistics with permuted indices x <- matrix(rnorm(100), ncol = 2) y <- matrix(rnorm(100), ncol = 2) weights <- rep(1, 50) indx <- 1:50 perm <- 1:50 stopifnot(isequal(LinearStatistic(x, y, weights), PermutedLinearStatistic(x, y, indx, perm))) x <- matrix(1:10000, ncol = 2) y <- matrix(1:10000, ncol = 2) for (i in 1:100) { indx <- sample(1:ncol(y), replace = TRUE) perm <- sample(1:ncol(y), replace = TRUE) stopifnot(isequal(as.vector(t(x[indx,]) %*% y[perm, ]), PermutedLinearStatistic(x, y, indx, perm))) }