library(partsm) ########################### ###### acf.ext1 ########################### data("gergnp") lgergnp <- log(gergnp, base=exp(1)) out <- acf.ext1(wts=lgergnp, transf.type="orig", type="correlation", lag.max=12, showcat=TRUE, plot=FALSE) out <- acf.ext1(wts=lgergnp, transf.type="perdiffsd", perdiff.coeff = c(1.004, 0.981, 1.047, 0.969), type="correlation", lag.max=12, showcat=TRUE, plot=FALSE) ########################### ###### fit.ar.par ########################### ## Models for the the logarithms of the Real GNP in Germany. data("gergnp") lgergnp <- log(gergnp, base=exp(1)) ## Fit an AR(4) model with intercept and seasonal dummies. detcomp <- list(regular=c(1,0,c(1,2,3)), seasonal=c(0,0), regvar=0) out.ar <- fit.ar.par(wts=lgergnp, type="AR", detcomp=detcomp, p=4) ## Fit a PAR(2) model with seasonal intercepts. detcomp <- list(regular=c(0,0,0), seasonal=c(1,0), regvar=0) out.par <- fit.ar.par(wts=lgergnp, type="PAR", detcomp=detcomp, p=2) ########################### ###### fit.piar ########################### ## Fit a PIAR(2) model for the logarithms of the Real GNP in Germany. data("gergnp") lgergnp <- log(gergnp, base=exp(1)) detcomp <- list(regular=c(0,0,0), seasonal=c(1,0), regvar=0) out <- fit.piar(wts=lgergnp, detcomp=detcomp, p=2, initvalues=NULL) ########################### ###### Fnextp.test ########################### ## Test the significance of a second order lag in a PAR model for the Real GNP in Germany. ## Including seasonal intercepts. data("gergnp") lgergnp <- log(gergnp, base=exp(1)) detcomp <- list(regular=c(0,0,0), seasonal=c(1,0), regvar=0) out <- Fnextp.test(wts=lgergnp, detcomp=detcomp, p=1, type="PAR") ########################### ###### Fpar.test ########################### ## Test for periodicity in a second order PAR model for ## the logarithms of the Real GNP in Germany time series. data("gergnp") lgergnp <- log(gergnp, base=exp(1)) detcomp <- list(regular=c(0,0,0), seasonal=c(1,0), regvar=0) out <- Fpar.test(wts=lgergnp, detcomp=detcomp, p=2) ########################### ###### Fpari.piar.test ########################### ## Test for the unit root 1 in a PAR(2) with seasonal intercepts for ## the logarithms of the Real GNP in Germany. data("gergnp") lgergnp <- log(gergnp, base=exp(1)) detcomp <- list(regular=c(0,0,0), seasonal=c(1,0), regvar=0) out <- Fpari.piar.test(wts=lgergnp, detcomp=detcomp, p=2, type="PARI1") ########################### ###### Fsh.test ########################### ## Fsh test for the residuals of the first differences ## of the logarithms of the Real GNP in Germany ## on an AR(4) model with seasonal intercepts. data("gergnp") lgergnp <- log(gergnp, base=exp(1)) wts <- ts(c(NA, diff(gergnp, lag=1)), frequency=4, start=start(lgergnp)) detcomp=list(regular=c(0,0,0), seasonal=c(1,0), regvar=0) ar4 <- fit.ar.par(wts=lgergnp, type="AR", p=4, detcomp=detcomp) out <- Fsh.test(res=residuals(ar4@lm.ar), s=frequency(wts)) ########################### ###### LRurpar.test ########################### ## Test for a single unit root in a PAR(2) model with seasonal intercepts for the ## logarithms of the Real GNP in Germany. data("gergnp") lgergnp <- log(gergnp, base=exp(1)) detcomp <- list(regular=c(0,0,0), seasonal=c(1,0), regvar=0) out <- LRurpar.test(wts=lgergnp, detcomp=detcomp, p=2) ########################### ###### PAR.MVrepr ########################### ## Models for the the logarithms of the Real GNP in Germany. data("gergnp") lgergnp <- log(gergnp, base=exp(1)) ## Fit an PAR model detcomp <- list(regular=c(0,0,0), seasonal=c(1,0), regvar=0) out.par <- fit.ar.par(wts=lgergnp, type="PAR", detcomp=detcomp, p=2) ## Show the matrix representation: out.MV <- PAR.MVrepr(out.par) out.MV ########################### ###### PAR.MVrepr-methods ########################### ## Load data and select the deterministic components. data("gergnp") lgergnp <- log(gergnp, base=exp(1)) detcomp <- list(regular=c(0,0,0), seasonal=c(1,0), regvar=0) ## Multivariate representation of a PAR(2) model with sesonal intercepts. out.par <- fit.ar.par(wts=lgergnp, type="PAR", detcomp=detcomp, p=2) PAR.MVrepr(out.par) ## Multivariate representation of a PIAR(2) model with sesonal intercepts. out.piar <- fit.piar(wts=lgergnp, detcomp=detcomp, p=2) PAR.MVrepr(out.piar) ########################### ###### plotpdiff ########################### ## Load data and select the deterministic components. data("gergnp") lgergnp <- log(gergnp, base=exp(1)) detcomp <- list(regular=c(0,0,0), seasonal=c(1,0), regvar=0) ## Fit a PIAR(2) model with seasonal intercepts. out.piar <- fit.piar(wts=lgergnp, detcomp=detcomp, p=2) plotpdiff(out.piar) ########################### ###### plotpredpiar ########################### ## Load data and select the deterministic components. data("gergnp") lgergnp <- log(gergnp, base=exp(1)) ## Fit a PIAR(2) model with seasonal intercepts. out.pred <- predictpiar(wts=lgergnp, p=2, hpred=24) plotpredpiar(out.pred) ########################### ###### predictpiar ########################### ## 24 step-ahead forecasts in a PIAR(2) model for the ## logarithms of the Real GNP in Germany. data("gergnp") lgergnp <- log(gergnp, base=exp(1)) pred.out <- predictpiar(wts=lgergnp, p=2, hpred=24) ########################### ###### show-methods ########################### ## Load data and select the deterministic components. data("gergnp") lgergnp <- log(gergnp, base=exp(1)) detcomp <- list(regular=c(0,0,0), seasonal=c(1,0), regvar=0) ## Fit an AR(4) model with intercept and seasonal dummies. dcar <- list(regular=c(1,0,c(1,2,3)), seasonal=c(0,0), regvar=0) out.ar <- fit.ar.par(wts=lgergnp, type="AR", detcomp=dcar, p=4) show(out.ar) ## Fit a PAR(2) model with seasonal intercepts. out.par <- fit.ar.par(wts=lgergnp, type="PAR", detcomp=detcomp, p=2) show(out.par) ## Fnextp.test Fnextp.out <- Fnextp.test(wts=lgergnp, detcomp=detcomp, p=1, type="PAR") show(Fnextp.out) ## Fpar.test Fpar.out <- Fpar.test(wts=lgergnp, detcomp=detcomp, p=2) show(Fpar.out) ## Fsh.test ar4 <- fit.ar.par(wts=lgergnp, type="AR", p=4, detcomp=detcomp) Fsh.out <- Fsh.test(res=residuals(ar4@lm.ar), s=frequency(lgergnp)) show(Fsh.out) ## Fit a PIAR(2) model with seasonal intercepts. out.piar <- fit.piar(wts=lgergnp, detcomp=detcomp, p=2) show(out.piar) ## Fpari.piar.test Fpari1.out <- Fpari.piar.test(wts=lgergnp, detcomp=detcomp, p=2, type="PARI1") show(Fpari1.out) ## Fit a PIAR(2) model with seasonal intercepts. out.piar <- fit.piar(wts=lgergnp, detcomp=detcomp, p=2) show(out.piar) ## Test for a single unit root in a PAR(2) model with seasonal intercepts. out.LR <- LRurpar.test(wts=lgergnp, detcomp=detcomp, p=2) show(out.LR) ## 24 step-ahead forecasts in a PIAR(2) model. pred.out <- predictpiar(wts=lgergnp, p=2, hpred=24) options(digits=4) show(pred.out) options(digits=7) ########################### ###### summary-methods ########################### ## Load data and select the deterministic components. data("gergnp") lgergnp <- log(gergnp, base=exp(1)) detcomp <- list(regular=c(0,0,0), seasonal=c(1,0), regvar=0) ## Fit an AR(4) model with intercept and seasonal dummies. dcar <- list(regular=c(1,0,c(1,2,3)), seasonal=c(0,0), regvar=0) out.ar <- fit.ar.par(wts=lgergnp, type="AR", detcomp=dcar, p=4) summary(out.ar) ## Fit a PAR(2) model with seasonal intercepts. detcomp <- list(regular=c(0,0,0), seasonal=c(1,0), regvar=0) out.par <- fit.ar.par(wts=lgergnp, type="PAR", detcomp=detcomp, p=2) summary(out.par) ## Fnextp.test Fnextp.out <- Fnextp.test(wts=lgergnp, detcomp=detcomp, p=1, type="PAR") summary(Fnextp.out) ## Fpar.test Fpar.out <- Fpar.test(wts=lgergnp, detcomp=detcomp, p=2) summary(Fpar.out) ## Fsh.test ar4 <- fit.ar.par(wts=lgergnp, type="AR", p=4, detcomp=detcomp) Fsh.out <- Fsh.test(res=residuals(ar4@lm.ar), s=frequency(lgergnp)) summary(Fsh.out) ## Fit a PIAR(2) model. out.piar <- fit.piar(wts=lgergnp, detcomp=detcomp, p=2) summary(out.piar, digits=1) ## Fpari.piar.test Fpari1.out <- Fpari.piar.test(wts=lgergnp, detcomp=detcomp, p=2, type="PARI1") Fpari1.out # options(digits=3) # summary(Fpari1.out) # options(digits=3) ## Fit a PIAR(2) model with seasonal intercepts. out.piar <- fit.piar(wts=lgergnp, detcomp=detcomp, p=2) summary(out.piar, digits=1) ## Test for a single unit root in a PAR(2) model with seasonal intercepts. out.LR <- LRurpar.test(wts=lgergnp, detcomp=detcomp, p=2) options(digits=1) summary(out.LR) options(digits=7)