skip_if_not_installed("modeldata") hpc <- hpc_data[1:150, c(2:5, 8)] # ------------------------------------------------------------------------------ hpc_bad <- hpc |> dplyr::mutate(big_num = Inf) lending_club <- lending_club |> dplyr::slice(1:200) |> dplyr::mutate(big_num = Inf) lvl <- levels(lending_club$Class) # ------------------------------------------------------------------------------ ctrl <- control_parsnip(catch = TRUE) # ------------------------------------------------------------------------------ test_that('numeric model', { lm_mod <- linear_reg() |> set_engine("lm") |> fit(compounds ~ ., data = hpc_bad, control = ctrl) expect_snapshot(num_res <- predict(lm_mod, hpc_bad[1:11, -1])) expect_equal(num_res, NULL) expect_snapshot(ci_res <- predict(lm_mod, hpc_bad[1:11, -1], type = "conf_int")) expect_equal(ci_res, NULL) expect_snapshot(pi_res <- predict(lm_mod, hpc_bad[1:11, -1], type = "pred_int")) expect_equal(pi_res, NULL) }) # ------------------------------------------------------------------------------ test_that('classification model', { log_reg <- logistic_reg() |> set_engine("glm") |> fit(Class ~ log(funded_amnt) + int_rate + big_num, data = lending_club, control = ctrl) expect_snapshot( cls_res <- predict(log_reg, lending_club |> dplyr::slice(1:7) |> dplyr::select(-Class)) ) expect_equal(cls_res, NULL) expect_snapshot( prb_res <- predict(log_reg, lending_club |> dplyr::slice(1:7) |> dplyr::select(-Class), type = "prob") ) expect_equal(prb_res, NULL) expect_snapshot( ci_res <- predict(log_reg, lending_club |> dplyr::slice(1:7) |> dplyr::select(-Class), type = "conf_int") ) expect_equal(ci_res, NULL) })