hpc <- hpc_data[1:150, c(2:5, 8)] # ------------------------------------------------------------------------------ test_that('updating', { expect_snapshot( multinom_reg(mixture = 0) %>% set_engine("glmnet", nlambda = 10) %>% update(mixture = tune(), nlambda = tune()) ) }) test_that('bad input', { expect_snapshot(error = TRUE, multinom_reg(mode = "regression")) expect_snapshot(error = TRUE, translate(multinom_reg(penalty = 0.1) %>% set_engine("wat?"))) expect_snapshot(error = TRUE, multinom_reg(penalty = 0.1) %>% set_engine()) expect_warning( translate( multinom_reg(penalty = 0.1) %>% set_engine("glmnet", x = hpc[,1:3], y = hpc$class) ), class = "parsnip_protected_arg_warning" ) }) test_that('check_args() works', { skip_if_not_installed("keras") expect_snapshot( error = TRUE, { spec <- multinom_reg(mixture = -1) %>% set_engine("keras") %>% set_mode("classification") fit(spec, class ~ ., hpc) } ) expect_snapshot( error = TRUE, { spec <- multinom_reg(penalty = -1) %>% set_engine("keras") %>% set_mode("classification") fit(spec, class ~ ., hpc) } ) }) # ------------------------------------------------------------------------------ test_that("tunables", { expect_snapshot( multinom_reg() %>% tunable() ) expect_snapshot( multinom_reg() %>% set_engine("brulee") %>% tunable() ) expect_snapshot( multinom_reg() %>% set_engine("nnet") %>% tunable() ) expect_snapshot( multinom_reg() %>% set_engine("glmnet") %>% tunable() ) expect_snapshot( multinom_reg() %>% set_engine("keras") %>% tunable() ) })