skip_on_cran() skip_if_not_installed("MuMIn") skip_if_not_installed("withr") skip_if_not_installed("glmmTMB") skip_if_not_installed("betareg") withr::with_options( list(na.action = "na.fail"), test_that("MuMIn link functions", { library(MuMIn) # nolint set.seed(1234) dat <- data.frame( outcome = rbinom(n = 100, size = 1, prob = 0.35), var_binom = as.factor(rbinom(n = 100, size = 1, prob = 0.2)), var_cont = rnorm(n = 100, mean = 10, sd = 7), group = sample(letters[1:4], size = 100, replace = TRUE), stringsAsFactors = FALSE ) dat$var_cont <- as.vector(scale(dat$var_cont)) m1 <- glm( outcome ~ var_binom + var_cont, data = dat, family = binomial(link = "logit") ) out <- MuMIn::model.avg(MuMIn::dredge(m1), fit = TRUE) mp <- model_parameters(out) expect_snapshot(print(mp)) }) ) test_that("ggpredict, glmmTMB averaging", { library(MuMIn) # nolint data(FoodExpenditure, package = "betareg") m <- glmmTMB::glmmTMB( I(food / income) ~ income + (1 | persons), ziformula = ~1, data = FoodExpenditure, na.action = "na.fail", family = glmmTMB::beta_family() ) set.seed(123) dr <- MuMIn::dredge(m) avg <- MuMIn::model.avg(object = dr, fit = TRUE) mp <- model_parameters(avg) expect_snapshot(print(mp)) }) withr::with_options( list(na.action = "na.fail"), test_that("ggpredict, poly averaging", { library(MuMIn) data(mtcars) mtcars$am <- factor(mtcars$am) set.seed(123) m <- lm(disp ~ mpg + I(mpg^2) + am + gear, mtcars) dr <- MuMIn::dredge(m, subset = dc(mpg, I(mpg^2))) dr <- subset(dr, !(has(mpg) & !has(I(mpg^2)))) mod.avg.i <- MuMIn::model.avg(dr, fit = TRUE) mp <- model_parameters(mod.avg.i) expect_snapshot(print(mp)) }) ) unloadNamespace("MuMIn")