test_that("pooled parameters", { skip_if_not_installed("mice") data("nhanes2", package = "mice") set.seed(123) imp <- mice::mice(nhanes2, printFlag = FALSE) models <- lapply(1:5, function(i) { lm(bmi ~ age + hyp + chl, data = mice::complete(imp, action = i)) }) pp <- pool_parameters(models) expect_equal(pp$df_error, c(9.2225, 8.1903, 3.6727, 10.264, 6.4385), tolerance = 1e-3) expect_snapshot(print(pp)) }) test_that("pooled parameters", { skip_if_not_installed("mice") skip_if_not_installed("datawizard") data("nhanes2", package = "mice") nhanes2$hyp <- datawizard::slide(as.numeric(nhanes2$hyp)) set.seed(123) imp <- mice::mice(nhanes2, printFlag = FALSE) models <- lapply(1:5, function(i) { glm(hyp ~ age + chl, family = binomial, data = mice::complete(imp, action = i)) }) pp1 <- pool_parameters(models) expect_equal(pp1$df_error, c(Inf, Inf, Inf, Inf), tolerance = 1e-3) pp2 <- pool_parameters(models, ci_method = "residual") m_mice <- with(data = imp, exp = glm(hyp ~ age + chl, family = binomial)) pp3 <- summary(mice::pool(m_mice)) expect_equal(pp2$df_error, pp3$df, tolerance = 1e-3) })