skip_if_not_installed("mgcv") set.seed(123) void <- capture.output({ dat <- mgcv::gamSim(6, n = 200, scale = 0.2, dist = "poisson") }) m1_gamm <- mgcv::gamm( y ~ s(x0) + s(x1) + s(x2), family = poisson, data = dat, random = list(fac = ~1), verbosePQL = FALSE ) test_that("ci", { expect_equal( ci(m1_gamm)$CI_low, c(2.361598, NA, NA, NA), tolerance = 1e-3 ) }) test_that("se", { expect_equal( standard_error(m1_gamm)$SE, c(0.3476989, NA, NA, NA), tolerance = 1e-3 ) }) test_that("p_value", { expect_equal( p_value(m1_gamm)$p, c(0, 0, 0, 0), tolerance = 1e-3 ) }) mp <- model_parameters(m1_gamm) test_that("model_parameters", { expect_equal( mp$Coefficient, c(3.0476, NA, NA, NA), tolerance = 1e-3 ) }) test_that("model_parameters", { expect_equal( mp$df, c(NA, 3.84696, 3.17389, 8.51855), tolerance = 1e-3 ) }) test_that("model_parameters", { expect_equal( mp$df_error, c(183.4606, NA, NA, NA), tolerance = 1e-3 ) })