skip_if_not_installed("survival") lung <- subset(survival::lung, subset = ph.ecog %in% 0:2) lung$sex <- factor(lung$sex, labels = c("male", "female")) lung$ph.ecog <- factor(lung$ph.ecog, labels = c("good", "ok", "limited")) m1 <- survival::coxph(survival::Surv(time, status) ~ sex + age + ph.ecog, data = lung) test_that("ci", { expect_equal( ci(m1)$CI_low, c(-0.87535, -0.00747, 0.01862, 0.45527), tolerance = 1e-4 ) }) test_that("se", { expect_equal( standard_error(m1)$SE, c(0.16823, 0.00931, 0.19961, 0.22809), tolerance = 1e-4 ) }) test_that("p_value", { expect_equal( p_value(m1)$p, c(0.00118, 0.24713, 0.04005, 8e-05), tolerance = 1e-4 ) }) test_that("model_parameters", { expect_equal( model_parameters(m1)$Coefficient, c(-0.54563, 0.01078, 0.40984, 0.90232), tolerance = 1e-4 ) }) test_that("model_parameters", { suppressPackageStartupMessages(library(survival, quietly = TRUE)) # Create the simplest test data set test1 <- list( time = c(4, 3, 1, 1, 2, 2, 3), status = c(1, 1, 1, 0, 1, 1, 0), x = c(0, 2, 1, 1, 1, 0, 0), sex = c(0, 0, 0, 0, 1, 1, 1) ) # Fit a stratified model m2 <- coxph(Surv(time, status) ~ x + strata(sex), test1) expect_equal(model_parameters(m2)$Coefficient, 0.8023179, tolerance = 1e-4) expect_equal(model_parameters(m2)$z, 0.9756088, tolerance = 1e-4) expect_equal(model_parameters(m2)$p, 0.3292583, tolerance = 1e-4) unloadNamespace("rms") unloadNamespace("quantreg") unloadNamespace("multcomp") unloadNamespace("TH.data") unloadNamespace("effects") unloadNamespace("survey") unloadNamespace("survival") })