test_that("p_value", { expect_equal(p_value(c(1, 1, 1)), p_value(-c(1, 1, 1)), tolerance = 1e-3) set.seed(123) x <- rnorm(100, mean = 1.5) expect_equal(p_value(x), p_value(-x), tolerance = 1e-3) expect_gt(p_value(x, null = 1), p_value(x)) expect_gt(p_value(x), p_value(x, null = -1)) expect_equal(p_value(x, null = -1), p_value(-x, null = 1), tolerance = 1e-3) }) skip_on_cran() test_that("p_value", { skip_if_not_installed("curl") skip_if_offline() skip_if_not_installed("httr") skip_if_not_installed("lme4") # h-tests model <- insight::download_model("htest_1") expect_equal(p_value(model), 0.04136799, tolerance = 0.01) model <- insight::download_model("htest_2") expect_equal(p_value(model), 0.1518983, tolerance = 0.01) model <- insight::download_model("htest_3") expect_equal(p_value(model), 0.182921, tolerance = 0.01) model <- insight::download_model("htest_4") expect_equal(p_value(model), 0, tolerance = 0.01) model <- insight::download_model("htest_5") expect_equal(p_value(model), 0, tolerance = 0.01) model <- insight::download_model("htest_6") expect_equal(p_value(model), 0, tolerance = 0.01) model <- insight::download_model("htest_7") expect_equal(p_value(model), 0, tolerance = 0.01) model <- insight::download_model("htest_8") expect_equal(p_value(model), 0, tolerance = 0.01) # ANOVAs model <- insight::download_model("aov_1") expect_equal(p_value(model)$p, 0, tolerance = 0.01) model <- insight::download_model("anova_1") expect_equal(p_value(model)$p, 0, tolerance = 0.01) model <- insight::download_model("aovlist_1") expect_equal(p_value(model)$p, 0, tolerance = 0.01) model <- insight::download_model("aov_2") expect_equal(p_value(model)$p[1], 0, tolerance = 0.01) model <- insight::download_model("anova_2") expect_equal(p_value(model)$p[1], 0, tolerance = 0.01) model <- insight::download_model("aovlist_2") expect_equal(p_value(model)$p[1], 0, tolerance = 0.01) model <- insight::download_model("aov_3") expect_equal(p_value(model)$p[1], 0, tolerance = 0.01) model <- insight::download_model("anova_3") expect_equal(p_value(model)$p[1], 0, tolerance = 0.01) model <- insight::download_model("aovlist_3") expect_equal(p_value(model)$p[1], 0, tolerance = 0.01) model <- insight::download_model("anova_4") expect_equal(p_value(model)$p[2], 0, tolerance = 0.01) # ANOVA lmer model <- insight::download_model("anova_lmerMod_0") expect_identical(p_value(model), NA) model <- insight::download_model("anova_lmerMod_1") expect_identical(p_value(model), NA) model <- insight::download_model("anova_lmerMod_2") expect_identical(p_value(model), NA) model <- insight::download_model("anova_lmerMod_3") expect_identical(p_value(model), NA) model <- insight::download_model("anova_lmerMod_4") expect_identical(p_value(model), NA) model <- insight::download_model("anova_lmerMod_5") expect_identical(p_value(model), NA) model <- insight::download_model("anova_lmerMod_6") expect_equal(p_value(model)$p[2], 0, tolerance = 0.01) # Mixed models model <- lme4::lmer(wt ~ cyl + (1 | gear), data = mtcars) expect_equal(p_value(model)$p[1], 0.206219, tolerance = 0.01) expect_equal(p_value(model, method = "normal")$p[1], 0.1956467, tolerance = 0.01) expect_equal(p_value(model, method = "kr")$p[1], 0.319398, tolerance = 0.01) model <- insight::download_model("merMod_1") expect_equal(p_value(model)$p[1], 0.06578, tolerance = 0.01) model <- insight::download_model("merMod_2") expect_equal(p_value(model)$p[1], 0.29912, tolerance = 0.01) })