skip_if_not_installed("mice") skip_if_not_installed("nnet") skip_if_not(packageVersion("insight") > "0.19.1") test_that("param ordinal", { set.seed(1234) d <- suppressWarnings(mice::ampute(mtcars)) ## Ampute mtcars and impute two data sets imp <- suppressWarnings(mice::mice(d$amp, m = 2, printFlag = FALSE)) imp.l <- mice::complete(imp, action = "long") model <- list() ## Fit and pool models for (i in 1:2) { capture.output({ model[[i]] <- nnet::multinom(cyl ~ disp + hp, data = imp.l, subset = .imp == i) }) } pooled <- mice::pool(model) mp <- model_parameters(pooled) expect_snapshot(print(mp)) }) test_that("param normal", { set.seed(1234) d <- suppressWarnings(mice::ampute(mtcars)) ## Ampute mtcars and impute two data sets imp <- suppressWarnings(mice::mice(d$amp, m = 2, printFlag = FALSE)) imp.l <- mice::complete(imp, action = "long") model <- list() ## Fit and pool models for (i in 1:2) model[[i]] <- lm(mpg ~ disp + hp, data = imp.l, subset = .imp == i) pooled <- mice::pool(model) mp <- model_parameters(pooled) expect_snapshot(print(mp)) })