skip_if_not_installed("marginaleffects", minimum_version = "0.18.0") skip_if_not_installed("insight", minimum_version = "0.19.9") skip_if_not_installed("rstanarm") test_that("marginaleffects()", { # Frequentist x <- lm(Sepal.Width ~ Species * Petal.Length, data = iris) model <- marginaleffects::avg_slopes(x, newdata = insight::get_datagrid(x, by = "Species"), variables = "Petal.Length") out <- parameters(model) expect_identical(nrow(out), 1L) cols <- c("Parameter", "Comparison", "Coefficient", "SE", "Statistic", "p", "S", "CI", "CI_low", "CI_high") expect_true(all(cols %in% colnames(out))) out <- model_parameters(model, exponentiate = TRUE) expect_equal(out$Coefficient, 1.394, tolerance = 1e-3) # Bayesian x <- suppressWarnings( rstanarm::stan_glm( Sepal.Width ~ Species * Petal.Length, data = iris, refresh = 0, iter = 100, chains = 1 ) ) model <- marginaleffects::avg_slopes(x, newdata = insight::get_datagrid(x, by = "Species"), variables = "Petal.Length") expect_identical(nrow(parameters(model)), 1L) }) test_that("predictions()", { x <- lm(Sepal.Width ~ Species * Petal.Length, data = iris) p <- marginaleffects::avg_predictions(x, by = "Species") out <- parameters(p) expect_identical(nrow(out), 3L) expect_named(out, c( "Predicted", "SE", "CI", "CI_low", "CI_high", "S", "Statistic", "p", "Species" )) out <- parameters(p, exponentiate = TRUE) expect_equal(out$Predicted, c(30.81495, 15.95863, 19.57004), tolerance = 1e-4) }) test_that("comparisons()", { data(iris) # Frequentist x <- lm(Sepal.Width ~ Species * Petal.Length, data = iris) m <- marginaleffects::avg_comparisons(x, newdata = insight::get_datagrid(x, by = "Species"), variables = "Petal.Length") expect_identical(nrow(parameters(m)), 1L) out <- parameters(m, exponentiate = TRUE) expect_equal(out$Coefficient, 1.393999, tolerance = 1e-4) # Bayesian x <- suppressWarnings( rstanarm::stan_glm( Sepal.Width ~ Species * Petal.Length, data = iris, refresh = 0, iter = 100, chains = 1 ) ) m <- marginaleffects::avg_slopes( x, newdata = insight::get_datagrid(x, by = "Species"), variables = "Petal.Length" ) expect_identical(nrow(parameters(m)), 1L) }) test_that("hypotheses()", { data(mtcars) x <- lm(mpg ~ hp + wt, data = mtcars) m <- marginaleffects::hypotheses(x, "hp = wt") expect_identical(nrow(parameters(m)), 1L) }) test_that("multiple contrasts: Issue #779", { skip_if(getRversion() < "4.0.0") data(mtcars) mod <- lm(mpg ~ as.factor(gear) * as.factor(cyl), data = mtcars) cmp <- suppressWarnings(marginaleffects::comparisons( mod, variables = c("gear", "cyl"), newdata = insight::get_datagrid(mod, by = c("gear", "cyl")), cross = TRUE )) cmp <- suppressWarnings(parameters(cmp)) expect_true("Comparison: gear" %in% colnames(cmp)) expect_true("Comparison: cyl" %in% colnames(cmp)) }) test_that("model_parameters defaults to FALSE: Issue #916", { data(mtcars) mod <- lm(mpg ~ wt, data = mtcars) pred <- marginaleffects::predictions(mod, newdata = marginaleffects::datagrid(wt = c(1, 2))) out1 <- model_parameters(pred) out2 <- model_parameters(pred, exponentiate = FALSE) expect_equal(out1$Predicted, out2$Predicted, tolerance = 1e-4) })