skip_if_not_installed("psych") skip_if_not_installed("nFactors") skip_if_not_installed("GPArotation") test_that("principal_components", { x <- principal_components(mtcars[, 1:7], rotation = "varimax") expect_equal( x$RC1, c( -0.836114674884308, 0.766808147590597, 0.85441780762136, 0.548502661888057, -0.889046093964722, 0.931879020871552, -0.030485507571411 ), tolerance = 0.01 ) expect_named(x, c("Variable", "RC1", "RC2", "Complexity", "Uniqueness", "MSA")) expect_identical(dim(predict(x)), c(32L, 2L)) expect_named(predict(x, names = c("A", "B")), c("A", "B")) expect_identical(nrow(predict(x, newdata = mtcars[1:3, 1:7])), 3L) }) test_that("principal_components, n", { data(iris) x <- principal_components(iris[1:4], n = 2) expect_named(x, c("Variable", "PC1", "PC2", "Complexity")) x <- principal_components(iris[1:4], n = 1) expect_named(x, c("Variable", "PC1", "Complexity")) }) test_that("principal_components", { x <- principal_components(mtcars[, 1:7]) expect_equal( x$PC1, c( -0.930866058535747, 0.9578708009312, 0.952846253483008, 0.874493647245971, -0.746868056938478, 0.882509152331738, -0.541093678419456 ), tolerance = 0.01 ) expect_named(x, c("Variable", "PC1", "PC2", "Complexity")) expect_identical(dim(predict(x)), c(32L, 2L)) }) # predict ---------------------- # N.B tests will fail if `GPArotation` package is not installed test_that("predict model_parameters fa", { d <- na.omit(psych::bfi[, 1:25]) model <- psych::fa(d, nfactors = 5) mp <- model_parameters(model, sort = TRUE, threshold = "max") pr <- suppressMessages( predict(mp, names = c("Neuroticism", "Conscientiousness", "Extraversion", "Agreeableness", "Opennness")) ) out <- head(pr, 5) expect_equal( out$Neuroticism, c(-0.22242, 0.1618, 0.61907, -0.11692, -0.17372), tolerance = 0.01 ) expect_equal( out$Opennness, c(-1.6092, -0.17222, 0.23341, -1.06152, -0.66086), tolerance = 0.01 ) expect_identical(nrow(predict(mp, keep_na = FALSE)), 2436L) expect_identical(nrow(predict(mp, newdata = d[1:10, ], keep_na = FALSE)), 10L) expect_named( predict(mp, names = c("A", "B", "C", "D", "E"), keep_na = FALSE), c("A", "B", "C", "D", "E") ) model <- factor_analysis(d, n = 5) expect_identical(nrow(predict(model, keep_na = FALSE)), 2436L) }) unloadNamespace("GPArotation")