data(mtcars) model <- lm(mpg ~ wt + as.factor(gear) + am, data = mtcars) test_that("p_calibrate model", { expect_silent(p_calibrate(model, verbose = FALSE)) expect_warning(out <- p_calibrate(model)) expect_equal(dim(out), c(5, 3)) expect_equal(colnames(out), c("Parameter", "p", "p_calibrated")) expect_equal(out$p_calibrated, c(0, 5e-05, 0.48261, NA, NA), tolerance = 1e-4) expect_warning(out <- p_calibrate(model, type = "bayes")) expect_equal(out$p_calibrated, c(0, 5e-05, 0.93276, NA, NA), tolerance = 1e-4) }) test_that("p_calibrate numeric", { p <- c(0.2, 0.1, 0.05, 0.01, 0.005, 0.001) # See Table 1 Sellke et al. doi: 10.1198/000313001300339950 out <- p_calibrate(p) expect_equal(out, c(0.4667, 0.385, 0.2893, 0.1113, 0.0672, 0.0184), tolerance = 1e-3) out <- p_calibrate(p, type = "bayes") expect_equal(out, c(0.875, 0.6259, 0.4072, 0.1252, 0.072, 0.0188), tolerance = 1e-3) }) test_that("p_calibrate print", { out <- p_calibrate(model, verbose = FALSE) ref <- capture.output(print(out)) expect_equal( ref, c( "Parameter | p | p (calibrated)", "------------------------------------------", "(Intercept) | < .001 | < .001", "wt | < .001 | < .001", "as.factor(gear)4 | 0.242 | 0.483 ", "as.factor(gear)5 | 0.660 | ", "am | 0.925 | ", "Calibrated p-values indicate the posterior probability of H0." ) ) })