skip_if_not_installed("lme4") skip_on_cran() m1 <- lme4::lmer(wt ~ cyl + (1 | gear), data = mtcars) m2 <- lme4::glmer(vs ~ cyl + (1 | gear), data = mtcars, family = "binomial") test_that("model_parameters.mixed", { params <- model_parameters(m1, ci_method = "normal", effects = "fixed") expect_identical(c(nrow(params), ncol(params)), c(2L, 10L)) expect_equal(params$CI_high, c(1.6373105660317, 0.554067677205595), tolerance = 1e-3) params <- model_parameters(m1, effects = "fixed") expect_identical(c(nrow(params), ncol(params)), c(2L, 10L)) expect_equal(params$CI_high, c(1.68181, 0.56083), tolerance = 1e-3) params <- model_parameters(m1, ci = c(0.8, 0.9), ci_method = "normal", effects = "fixed") expect_identical(c(nrow(params), ncol(params)), c(2L, 11L)) expect_equal(params$CI_high_0.8, c(1.29595665381331, 0.502185700948862), tolerance = 1e-3) expect_equal(params$CI_high_0.9, c(1.47875781798108, 0.529969433080186), tolerance = 1e-3) params <- model_parameters(m1, ci_method = "normal", effects = "fixed") lme4_ci <- na.omit(as.data.frame(confint(m1, method = "Wald"))) expect_equal(params$CI_low, lme4_ci$`2.5 %`, tolerance = 1e-4) params <- model_parameters(m1, ci = c(0.8, 0.9), ci_method = "wald", effects = "fixed") expect_identical(c(nrow(params), ncol(params)), c(2L, 11L)) expect_equal(params$CI_high_0.8, c(1.31154, 0.50455), tolerance = 1e-3) expect_equal(params$CI_high_0.9, c(1.50707, 0.53427), tolerance = 1e-3) params <- model_parameters(m1, ci = c(0.8, 0.9), effects = "fixed") expect_identical(c(nrow(params), ncol(params)), c(2L, 11L)) expect_equal(params$CI_high_0.8, c(1.31154, 0.50455), tolerance = 1e-3) expect_equal(params$CI_high_0.9, c(1.50707, 0.53427), tolerance = 1e-3) params <- model_parameters(m2, effects = "fixed") expect_identical(c(nrow(params), ncol(params)), c(2L, 10L)) model <- lme4::glmer(vs ~ drat + cyl + (1 | gear), data = mtcars, family = "binomial") params <- model_parameters(model, effects = "fixed") cs <- coef(summary(model)) expect_identical(c(nrow(params), ncol(params)), c(3L, 10L)) expect_named(params, c( "Parameter", "Coefficient", "SE", "CI", "CI_low", "CI_high", "z", "df_error", "p", "Effects" )) expect_identical(params$Parameter, rownames(cs)) }) test_that("model_parameters.mixed bootstrap", { skip_on_os(c("linux", "mac")) skip_on_cran() set.seed(123) suppressWarnings(expect_message( { params <- model_parameters(m1, bootstrap = TRUE, iterations = 100) }, regex = "only returns" )) expect_equal(params$Coefficient, c(0.60496, 0.41412), tolerance = 1e-3) }) test_that("model_parameters.mixed-random", { params <- model_parameters(m1, effects = "random", group_level = TRUE) expect_identical(c(nrow(params), ncol(params)), c(3L, 9L)) expect_identical(as.vector(params$Parameter), c("(Intercept)", "(Intercept)", "(Intercept)")) expect_identical(as.vector(params$Level), c("3", "4", "5")) expect_equal(params$Coefficient, c(0.1692, 0.0566, -0.2259), tolerance = 1e-2) }) test_that("model_parameters.mixed-ran_pars", { params <- model_parameters(m1, effects = "random") expect_identical(c(nrow(params), ncol(params)), c(2L, 8L)) expect_identical( as.vector(params$Parameter), c("SD (Intercept)", "SD (Observations)") ) expect_equal(params$Coefficient, c(0.27049, 0.59385), tolerance = 1e-2) }) test_that("model_parameters.mixed-all", { params <- model_parameters(m1, effects = "all") expect_identical(c(nrow(params), ncol(params)), c(4L, 11L)) expect_identical( as.vector(params$Parameter), c("(Intercept)", "cyl", "SD (Intercept)", "SD (Observations)") ) expect_equal(params$Coefficient, c(0.65112, 0.40418, 0.27049, 0.59385), tolerance = 1e-2) }) test_that("model_parameters.mixed-all_pars", { params <- model_parameters(m1, effects = "all", group_level = TRUE) expect_identical(c(nrow(params), ncol(params)), c(5L, 12L)) expect_identical( as.vector(params$Parameter), c("(Intercept)", "cyl", "(Intercept)", "(Intercept)", "(Intercept)") ) expect_equal(as.vector(params$Level), c(NA, NA, "3", "4", "5"), ignore_attr = TRUE) expect_equal( params$Coefficient, c(0.65112, 0.40418, 0.16923, 0.05663, -0.22586), tolerance = 1e-2 ) }) data("qol_cancer") qol_cancer <- cbind( qol_cancer, demean(qol_cancer, select = c("phq4", "QoL"), group = "ID") ) model <- lme4::lmer( QoL ~ time + phq4_within + phq4_between + (1 | ID), data = qol_cancer ) mp <- model_parameters(model, effects = "fixed") test_that("model_parameters.mixed", { expect_identical(mp$Component, c("rewb-contextual", "rewb-contextual", "within", "between")) }) test_that("print-model_parameters", { expect_snapshot(model_parameters(model, effects = "fixed")) }) test_that("print-model_parameters", { skip_if_not_installed("merDeriv") expect_snapshot(model_parameters(m1, effects = "all")) expect_snapshot(model_parameters(m1, effects = "fixed", summary = TRUE)) })