skip_if_not_installed("metaBMA") data(towels, package = "metaBMA") set.seed(1234) m <- suppressWarnings( metaBMA::meta_random( logOR, SE, study, data = towels, ci = 0.95, iter = 100, logml_iter = 200 ) ) test_that("model_parameters.meta_random", { params <- model_parameters(m) expect_identical( params$Parameter, c( "Goldstein, Cialdini, & Griskevicius (2008), Exp. 1", "Goldstein, Cialdini, & Griskevicius (2008), Exp. 2", "Schultz, Khazian, & Zaleski (2008), Exp. 2", "Schultz, Khazian, & Zaleski (2008), Exp. 3", "Mair & Bergin-Seers (2010), Exp. 1", "Bohner & Schluter (2014), Exp. 1", "Bohner & Schluter (2014), Exp. 2", "Overall", "tau" ) ) expect_equal( params$Coefficient, c(0.3806, 0.30494, 0.20554, 0.25084, 0.28768, -0.12154, -1.45792, 0.2004, 0.12107), tolerance = 1e-3 ) expect_equal( params$CI_low, c(-0.00686, 0.03816, -0.16998, -0.0825, -1.32685, -0.60772, -2.94785, -0.02744, 0.02641), tolerance = 1e-3 ) expect_identical( colnames(params), c( "Parameter", "Coefficient", "SE", "CI", "CI_low", "CI_high", "Weight", "BF", "Rhat", "ESS", "Component", "Prior_Distribution", "Prior_Location", "Prior_Scale", "Method" ) ) }) set.seed(1234) m2 <- metaBMA::meta_fixed( logOR, SE, study, data = towels, ci = 0.95 ) test_that("model_parameters.meta_fixed", { params <- model_parameters(m2) expect_identical(params$Parameter, c( "Goldstein, Cialdini, & Griskevicius (2008), Exp. 1", "Goldstein, Cialdini, & Griskevicius (2008), Exp. 2", "Schultz, Khazian, & Zaleski (2008), Exp. 2", "Schultz, Khazian, & Zaleski (2008), Exp. 3", "Mair & Bergin-Seers (2010), Exp. 1", "Bohner & Schluter (2014), Exp. 1", "Bohner & Schluter (2014), Exp. 2", "Overall" )) expect_equal(params$Coefficient, c(0.3806, 0.30494, 0.20554, 0.25084, 0.28768, -0.12154, -1.45792, 0.22141), tolerance = 1e-3 ) expect_equal( params$CI_low, c(-0.00686, 0.03816, -0.16998, -0.0825, -1.32685, -0.60772, -2.94785, 0.06839), tolerance = 1e-3 ) expect_identical( colnames(params), c( "Parameter", "Coefficient", "SE", "CI", "CI_low", "CI_high", "Weight", "BF", "Rhat", "ESS", "Component", "Prior_Distribution", "Prior_Location", "Prior_Scale", "Method" ) ) }) set.seed(1234) m3 <- suppressWarnings( metaBMA::meta_random( logOR, SE, study, data = towels, ci = 0.99, iter = 100, logml_iter = 200 ) ) test_that("model_parameters.meta_random", { params <- model_parameters(m3) expect_identical( params$Parameter, c( "Goldstein, Cialdini, & Griskevicius (2008), Exp. 1", "Goldstein, Cialdini, & Griskevicius (2008), Exp. 2", "Schultz, Khazian, & Zaleski (2008), Exp. 2", "Schultz, Khazian, & Zaleski (2008), Exp. 3", "Mair & Bergin-Seers (2010), Exp. 1", "Bohner & Schluter (2014), Exp. 1", "Bohner & Schluter (2014), Exp. 2", "Overall", "tau" ) ) expect_equal( params$Coefficient, c(0.3806, 0.30494, 0.20554, 0.25084, 0.28768, -0.12154, -1.45792, 0.2004, 0.12107), tolerance = 1e-3 ) expect_equal( params$CI_low, c(-0.00686, 0.03816, -0.16998, -0.0825, -1.32685, -0.60772, -2.94785, -0.15494, 0.01993), tolerance = 1e-3 ) expect_identical( colnames(params), c( "Parameter", "Coefficient", "SE", "CI", "CI_low", "CI_high", "Weight", "BF", "Rhat", "ESS", "Component", "Prior_Distribution", "Prior_Location", "Prior_Scale", "Method" ) ) })