skip_on_cran() skip_if_not_installed("mmrm") skip_if_not(packageVersion("insight") > "0.18.8") data(fev_data, package = "mmrm") test_that("model_parameters", { m1 <- mmrm::mmrm( formula = FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID), data = fev_data ) out1 <- coef(summary(m1)) out2 <- model_parameters(m1) expect_equal( as.vector(out1[, "Estimate"]), out2$Coefficient, tolerance = 1e-4, ignore_attr = TRUE ) expect_identical( rownames(out1), out2$Parameter ) expect_equal( as.vector(out1[, "df"]), out2$df_error, tolerance = 1e-4, ignore_attr = TRUE ) expect_equal( as.vector(out1[, "Pr(>|t|)"]), out2$p, tolerance = 1e-4, ignore_attr = TRUE ) expect_equal( as.vector(out1[, "t value"]), out2$t, tolerance = 1e-4, ignore_attr = TRUE ) expect_equal( as.vector(out1[, "Std. Error"]), out2$SE, tolerance = 1e-4, ignore_attr = TRUE ) expect_identical(attributes(out2)$ci_method, "Satterthwaite") }) test_that("model_parameters", { m1 <- mmrm::mmrm( formula = FEV1 ~ RACE + SEX + ARMCD * AVISIT + us(AVISIT | USUBJID), data = fev_data, method = "Kenward-Roger" ) out1 <- coef(summary(m1)) out2 <- model_parameters(m1) expect_equal( as.vector(out1[, "Estimate"]), out2$Coefficient, tolerance = 1e-4, ignore_attr = TRUE ) expect_identical( rownames(out1), out2$Parameter ) expect_equal( as.vector(out1[, "df"]), out2$df_error, tolerance = 1e-4, ignore_attr = TRUE ) expect_equal( as.vector(out1[, "Pr(>|t|)"]), out2$p, tolerance = 1e-4, ignore_attr = TRUE ) expect_equal( as.vector(out1[, "t value"]), out2$t, tolerance = 1e-4, ignore_attr = TRUE ) expect_equal( as.vector(out1[, "Std. Error"]), out2$SE, tolerance = 1e-4, ignore_attr = TRUE ) expect_identical(attributes(out2)$ci_method, "Kenward") })