skip_if_not_installed("mgcv") set.seed(123) dat <- mgcv::gamSim(1, n = 400, dist = "normal", scale = 2, verbose = FALSE) m1 <- mgcv::gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat) test_that("ci", { expect_equal( ci(m1)$CI_low, c(7.771085, NA, NA, NA, NA), tolerance = 1e-2 ) }) test_that("se", { expect_equal( standard_error(m1)$SE, c(0.1020741, NA, NA, NA, NA), tolerance = 1e-2 ) }) test_that("p_value", { expect_equal( p_value(m1)$p, c(0, 0, 0, 0, 0.00196), tolerance = 1e-2 ) }) skip_on_cran() mp <- model_parameters(m1) test_that("model_parameters", { expect_snapshot(mp) })