context("plot") # Tests powered by vdiffr. # To update the reference with vdiffr: # > library(vdiffr) # > source("tests/testthat.R") # > manage_cases() test_that("plot draws correctly", { skip_if(getRversion() < "4.1") test_basic_plot <- function() plot(r) # S100b r <- r.s100b expect_doppelganger("basic-s100b", test_basic_plot) r <- r.ndka expect_doppelganger("basic-ndka", test_basic_plot) r <- r.wfns expect_doppelganger("basic-wfns", test_basic_plot) }) test_that("legacy.axis works correctly", { skip_if(getRversion() < "4.1") r <- r.s100b test_legacy.axis_plot <- function() plot(r, legacy.axes = TRUE) expect_doppelganger("legacy.axes", test_legacy.axis_plot) }) test_that("Advanced screenshot 1 works correctly", { skip_if(getRversion() < "4.1") test_advanced_screenshot_1 <- function() { plot(r.s100b.percent, reuse.auc = FALSE, partial.auc = c(100, 90), partial.auc.correct = TRUE, # define a partial AUC (pAUC) print.auc = TRUE, # display pAUC value on the plot with following options: print.auc.pattern = "Corrected pAUC (100-90%% SP):\n%.1f%%", print.auc.col = "#1c61b6", auc.polygon = TRUE, auc.polygon.col = "#1c61b6", # show pAUC as a polygon max.auc.polygon = TRUE, max.auc.polygon.col = "#1c61b622", # also show the 100% polygon main = "Partial AUC (pAUC)" ) plot(r.s100b.percent, reuse.auc = FALSE, partial.auc = c(100, 90), partial.auc.correct = TRUE, partial.auc.focus = "se", # focus pAUC on the sensitivity add = TRUE, type = "n", # add to plot, but don't re-add the ROC itself (useless) print.auc = TRUE, print.auc.pattern = "Corrected pAUC (100-90%% SE):\n%.1f%%", print.auc.col = "#008600", print.auc.y = 40, # do not print auc over the previous one auc.polygon = TRUE, auc.polygon.col = "#008600", max.auc.polygon = TRUE, max.auc.polygon.col = "#00860022" ) } expect_doppelganger("advanced.screenshot.1", test_advanced_screenshot_1) }) test_that("Advanced screenshot 2 works correctly", { skip_slow() skip_if(getRversion() < "4.1") test_advanced_screenshot_2 <- function() { RNGkind(sample.kind = "Rejection") set.seed(42) # For reproducible CI suppressMessages(rocobj <- plot.roc(aSAH$outcome, aSAH$s100b, main = "Confidence intervals", percent = TRUE, ci = TRUE, # compute AUC (of AUC by default) print.auc = TRUE )) # print the AUC (will contain the CI) ciobj <- ci.se(rocobj, # CI of sensitivity specificities = seq(0, 100, 5) ) # over a select set of specificities plot(ciobj, type = "shape", col = "#1c61b6AA") # plot as a blue shape plot(ci(rocobj, of = "thresholds", thresholds = "best")) # add one threshold } expect_doppelganger("advanced.screenshot.2", test_advanced_screenshot_2) }) test_that("Advanced screenshot 3 works correctly", { skip_if(getRversion() < "4.4.0") test_advanced_screenshot_3 <- function() { plot(r.s100b.percent, main = "Smoothing") lines(smooth(r.s100b.percent), # smoothing (default: binormal) col = "#1c61b6" ) lines(smooth(r.s100b.percent, method = "density"), # density smoothing col = "#008600" ) lines( smooth(r.s100b.percent, method = "fitdistr", # fit a distribution density = "lognormal" ), # let the distribution be log-normal col = "#840000" ) legend("bottomright", legend = c("Empirical", "Binormal", "Density", "Fitdistr\n(Log-normal)"), col = c("black", "#1c61b6", "#008600", "#840000"), lwd = 2) } expect_doppelganger("advanced.screenshot.3", test_advanced_screenshot_3) }) test_that("Advanced screenshot 4 works correctly", { skip_slow() skip_if(getRversion() < "4.1") test_advanced_screenshot_4 <- function() { RNGkind(sample.kind = "Rejection") set.seed(42) # For reproducible CI suppressMessages(rocobj <- plot.roc(aSAH$outcome, aSAH$s100b, main = "Confidence intervals of specificity/sensitivity", percent = TRUE, ci = TRUE, of = "se", # ci of sensitivity specificities = seq(0, 100, 5), # on a select set of specificities ci.type = "shape", ci.col = "#1c61b6AA" # plot the CI as a blue shape )) plot(ci.sp(rocobj, sensitivities = seq(0, 100, 5)), # ci of specificity type = "bars" ) # print this one as bars } expect_doppelganger("advanced.screenshot.4", test_advanced_screenshot_4) }) test_that("Advanced screenshot 5 works correctly", { skip_slow() skip_if(getRversion() < "4.1") test_advanced_screenshot_5 <- function() { RNGkind(sample.kind = "Rejection") set.seed(42) # For reproducible CI suppressMessages(plot.roc(aSAH$outcome, aSAH$s100b, main = "Confidence interval of a threshold", percent = TRUE, ci = TRUE, of = "thresholds", # compute AUC (of threshold) thresholds = "best", # select the (best) threshold print.thres = "best" # also highlight this threshold on the plot )) } expect_doppelganger("advanced.screenshot.5", test_advanced_screenshot_5) }) test_that("Advanced screenshot 6 works correctly", { skip_if(getRversion() < "4.1") test_advanced_screenshot_6 <- function() { plot(r.s100b.percent, main = "Statistical comparison", col = "#1c61b6") lines(r.ndka.percent, col = "#008600") testobj <- roc.test(r.s100b.percent, r.ndka.percent) text(50, 50, labels = paste("p-value =", format.pval(testobj$p.value)), adj = c(0, .5)) legend("bottomright", legend = c("S100B", "NDKA"), col = c("#1c61b6", "#008600"), lwd = 2) } expect_doppelganger("advanced.screenshot.6", test_advanced_screenshot_6) }) test_that("plot and lines work with formula and subset", { skip_if(getRversion() < "4.1") test_plot_formula <- function() { suppressMessages(plot.roc(outcome ~ ndka, data = aSAH, subset = gender == "Female", col = "red")) suppressMessages(lines.roc(outcome ~ ndka, data = aSAH)) suppressMessages(lines.roc(outcome ~ ndka, data = aSAH, subset = gender == "Male", col = "blue")) } expect_doppelganger("plot_formula", test_plot_formula) }) test_that("PR curve with CI works", { skip_slow() skip_if(getRversion() < "4.1") test_plot_pr <- function() { RNGkind(sample.kind = "Rejection") set.seed(42) # For reproducible CI co <- coords(r.s100b, x = "all", input = "recall", ret = c("recall", "precision")) ci <- ci.coords(r.s100b, x = seq(0, 1, .1), input = "recall", ret = "precision") plot(co, type = "l", ylim = c(0, 1)) testthat::expect_warning(plot(ci, type = "shape"), "Low definition shape") plot(ci, type = "bars") lines(co) } expect_doppelganger("plot_pr", test_plot_pr) })