library(pROC) data(aSAH) numacc.response <- c(2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2) numacc.predictor <- c(0.960602681556147, 0.0794407386056549, 0.144842404246611, 0.931816485855784, 0.931816485855784, 0.97764041048215, 0.653549466997938699464, 0.796401132206396, 0.427720540184519, 0.811278021288732, 0.0188323116581187, 0.653549466997938588442, 0.653549466997938477419, 0.959111701445925, 0.931816485855784, 0.663663279418747, 0.800100838413179, 0.780456095511079) # Predictor has near-ties that can break numerical comparisons test_that("AUC is consistent across algorithms with numerical near-ties", { r1 <- roc(numacc.response, numacc.predictor, algorithm=1) r2 <- roc(numacc.response, numacc.predictor, algorithm=2) r3 <- roc(numacc.response, numacc.predictor, algorithm=3) expect_equal(as.numeric(auc(r1)), as.numeric(auc(r2))) expect_equal(as.numeric(auc(r1)), as.numeric(auc(r3))) }) test_that("AUC is consistent across algorithms with numerical near-ties and direction = >", { r1 <- roc(2-numacc.response, numacc.predictor, algorithm=1) r2 <- roc(2-numacc.response, numacc.predictor, algorithm=2) r3 <- roc(2-numacc.response, numacc.predictor, algorithm=3) expect_equal(as.numeric(auc(r1)), as.numeric(auc(r2))) expect_equal(as.numeric(auc(r1)), as.numeric(auc(r3))) }) test_that("delong theta is consistent with auc", { r1 <- roc(numacc.response, numacc.predictor, algorithm=1) r2 <- roc(numacc.response, numacc.predictor, algorithm=2) r3 <- roc(numacc.response, numacc.predictor, algorithm=3) expect_equal(pROC:::delongPlacements(r1)$theta, as.numeric(auc(r1))) expect_equal(pROC:::delongPlacements(r2)$theta, as.numeric(auc(r2))) expect_equal(pROC:::delongPlacements(r3)$theta, as.numeric(auc(r3))) }) test_that("delong theta is consistent with auc and direction = >", { r1 <- roc(2-numacc.response, numacc.predictor, algorithm=1) r2 <- roc(2-numacc.response, numacc.predictor, algorithm=2) r3 <- roc(2-numacc.response, numacc.predictor, algorithm=3) expect_equal(pROC:::delongPlacements(r1)$theta, as.numeric(auc(r1))) expect_equal(pROC:::delongPlacements(r2)$theta, as.numeric(auc(r2))) expect_equal(pROC:::delongPlacements(r3)$theta, as.numeric(auc(r3))) }) # Test some crazy values # Multiple sequencial near-tie that will break the thresholding algorithm at the limits close to +-Inf or 0 # Compare that with an "easy" curve with values with well defined intermediate averages test_that("Hard predictor has same results as easy one", { numacc.predictor.hard <- c(-0x1.fffffffffffffp+1023, -0x1.ffffffffffffep+1023, -0x1.ffffffffffffdp+1023, # Close to -Inf -0x1.249ad2594c37fp+332, -0x1.249ad2594c37ep+332, -0x1.249ad2594c37dp+332, -0x1.249ad2594c37cp+332, -0x1.249ad2594c37bp+332, -0x1.249ad2594c37ap+332, # Close to -1e100 -0x0.0000000000003p-1022, -0x0.0000000000002p-1022, -0x0.0000000000001p-1022, -0x0p+0, # Close to -0 0x0p+0, 0x0.0000000000001p-1022, 0x0.0000000000002p-1022, 0x0.0000000000003p-1022, # Close to +0 0x1.249ad2594c37ap+332, 0x1.249ad2594c37bp+332, 0x1.249ad2594c37cp+332, 0x1.249ad2594c37dp+332, 0x1.249ad2594c37ep+332, 0x1.249ad2594c37fp+332, # Close to +1e100 0x1.ffffffffffffdp+1023, 0x1.ffffffffffffep+1023, 0x1.fffffffffffffp+1023) # Close to +Inf numacc.predictor.easy <- c(-103, -102, -101, -10, -9, -8, -7, -6, -5, -0.1, -0.01, -0.001, 0, 0, 0.001, 0.01, 0.1, 5, 6, 7, 8, 9, 10, 101, 102, 103) response <- rbinom(length(numacc.predictor.easy), 1, 0.5) roc.hard <- roc(response, numacc.predictor.hard, direction="<") roc.easy <- roc(response, numacc.predictor.easy, direction="<") expect_equal(roc.hard$sensitivities, roc.easy$sensitivities, info = paste("Random response: ", paste(response, collapse=","))) expect_equal(roc.hard$specificities, roc.easy$specificities, info = paste("Random response: ", paste(response, collapse=","))) expect_equal(roc.hard$direction, roc.easy$direction, info = paste("Random response: ", paste(response, collapse=","))) }) test_that("Hard predictor has same results as easy one, random sampling", { skip_slow() numacc.predictor.hard <- c(-0x1.fffffffffffffp+1023, -0x1.ffffffffffffep+1023, -0x1.ffffffffffffdp+1023, # Close to -Inf -0x1.249ad2594c37fp+332, -0x1.249ad2594c37ep+332, -0x1.249ad2594c37dp+332, -0x1.249ad2594c37cp+332, -0x1.249ad2594c37bp+332, -0x1.249ad2594c37ap+332, # Close to -1e100 -0x0.0000000000003p-1022, -0x0.0000000000002p-1022, -0x0.0000000000001p-1022, -0x0p+0, # Close to -0 0x0p+0, 0x0.0000000000001p-1022, 0x0.0000000000002p-1022, 0x0.0000000000003p-1022, # Close to +0 0x1.249ad2594c37ap+332, 0x1.249ad2594c37bp+332, 0x1.249ad2594c37cp+332, 0x1.249ad2594c37dp+332, 0x1.249ad2594c37ep+332, 0x1.249ad2594c37fp+332, # Close to +1e100 0x1.ffffffffffffdp+1023, 0x1.ffffffffffffep+1023, 0x1.fffffffffffffp+1023) # Close to +Inf numacc.predictor.easy <- c(-103, -102, -101, -10, -9, -8, -7, -6, -5, -0.1, -0.01, -0.001, 0, 0, 0.001, 0.01, 0.1, 5, 6, 7, 8, 9, 10, 101, 102, 103) a <- replicate(100, { response <- rbinom(length(numacc.predictor.easy), 1, 0.5) sample.vector <- sample(length(numacc.predictor.easy), replace = as.logical(rbinom(1, 1, 0.5))) expect_message(roc.hard <- roc(response, numacc.predictor.hard[sample.vector], direction="<")) expect_message(roc.easy <- roc(response, numacc.predictor.easy[sample.vector], direction="<")) expect_equal(roc.hard$sensitivities, roc.easy$sensitivities, info = c(paste("Random response: ", paste(response, collapse=",")), paste("Random sample:", paste(sample.vector, collapse=",")))) expect_equal(roc.hard$specificities, roc.easy$specificities, info = c(paste("Random response: ", paste(response, collapse=",")), paste("Random sample:", paste(sample.vector, collapse=",")))) expect_equal(roc.hard$direction, roc.easy$direction, info = c(paste("Random response: ", paste(response, collapse=",")), paste("Random sample:", paste(sample.vector, collapse=",")))) }) })