library(pROC) data(aSAH) context("ci.formula") test_that("bootstrap cov works with smooth and !reuse.auc", { skip_slow() if (getRversion() > "3.6.0") { suppressWarnings(RNGkind(sample.kind="Rounding")) } for (pair in list( list(ci, list()), list(ci.se, list(boot.n = 10)), list(ci.sp, list(boot.n = 10)), list(ci.thresholds, list(boot.n = 10)), list(ci.coords, list(boot.n = 10, x = 0.5)), list(ci.auc, list()))) { fun <- pair[[1]] # First calculate ci with .default args.default <- c( list(response = aSAH$outcome, predictor = aSAH$s100b), pair[[2]]) set.seed(42) # For reproducible CI obs.default <- do.call(fun, args.default) # Then with .formula args.formula <- c( list(formula = outcome ~ s100b, data = aSAH), pair[[2]]) set.seed(42) # For reproducible CI obs.formula <- do.call(fun, args.formula) # Here we check both returned the same result # We ignore attributes, as we have different # roc objects, and unfortunately equivalent means # we only test near equality expect_equivalent(obs.default, obs.formula) } })