R Under development (unstable) (2024-06-07 r86704 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(testthat) > library(osqp) > > test_check("osqp") ----------------------------------------------------------------- OSQP v0.6.3 - Operator Splitting QP Solver (c) Bartolomeo Stellato, Goran Banjac University of Oxford - Stanford University 2021 ----------------------------------------------------------------- problem: variables n = 3, constraints m = 5 nnz(P) + nnz(A) = 15 settings: linear system solver = qdldl, eps_abs = 1.0e-03, eps_rel = 1.0e-03, eps_prim_inf = 1.0e-04, eps_dual_inf = 1.0e-04, rho = 1.00e-01 (adaptive), sigma = 1.00e-06, alpha = 1.60, max_iter = 4000 check_termination: on (interval 25), time_limit: 1.00e-10 sec, scaling: on, scaled_termination: off warm start: on, polish: off, time_limit: 1.00e-10 sec iter objective pri res dua res rho time run time limit reached 0 0.0000e+00 1.80e+01 3.44e+02 1.00e-01 8.25e-05s status: run time limit reached number of iterations: 0 run time: 1.08e-04s optimal rho estimate: 1.00e-01 ----------------------------------------------------------------- OSQP v0.6.3 - Operator Splitting QP Solver (c) Bartolomeo Stellato, Goran Banjac University of Oxford - Stanford University 2021 ----------------------------------------------------------------- problem: variables n = 2, constraints m = 5 nnz(P) + nnz(A) = 11 settings: linear system solver = qdldl, eps_abs = 1.0e-03, eps_rel = 1.0e-03, eps_prim_inf = 1.0e-04, eps_dual_inf = 1.0e-04, rho = 1.00e-01 (adaptive), sigma = 1.00e-06, alpha = 1.60, max_iter = 4000 check_termination: on (interval 25), scaling: on, scaled_termination: off warm start: on, polish: off, time_limit: off iter objective pri res dua res rho time 1 -4.5938e+00 1.92e+01 4.37e+00 1.00e-01 4.06e-05s 50 3.2497e+01 2.33e-04 1.78e-05 1.00e-01 8.65e-05s status: solved number of iterations: 50 optimal objective: 32.4973 run time: 1.22e-04s optimal rho estimate: 5.83e-01 ----------------------------------------------------------------- OSQP v0.6.3 - Operator Splitting QP Solver (c) Bartolomeo Stellato, Goran Banjac University of Oxford - Stanford University 2021 ----------------------------------------------------------------- problem: variables n = 2, constraints m = 5 nnz(P) + nnz(A) = 11 settings: linear system solver = qdldl, eps_abs = 1.0e-03, eps_rel = 1.0e-03, eps_prim_inf = 1.0e-04, eps_dual_inf = 1.0e-04, rho = 1.00e-01 (adaptive), sigma = 1.00e-06, alpha = 1.60, max_iter = 4000 check_termination: on (interval 25), scaling: on, scaled_termination: off warm start: on, polish: off, time_limit: off iter objective pri res dua res rho time 1 -4.5938e+00 1.92e+01 4.37e+00 1.00e-01 5.86e-05s 50 3.2497e+01 2.33e-04 1.78e-05 1.00e-01 1.05e-04s status: solved number of iterations: 50 optimal objective: 32.4973 run time: 1.44e-04s optimal rho estimate: 5.83e-01 ----------------------------------------------------------------- OSQP v0.6.3 - Operator Splitting QP Solver (c) Bartolomeo Stellato, Goran Banjac University of Oxford - Stanford University 2021 ----------------------------------------------------------------- problem: variables n = 2, constraints m = 5 nnz(P) + nnz(A) = 10 settings: linear system solver = qdldl, eps_abs = 1.0e-09, eps_rel = 1.0e-09, eps_prim_inf = 1.0e-04, eps_dual_inf = 1.0e-04, rho = 1.00e-01 (adaptive), sigma = 1.00e-06, alpha = 1.60, max_iter = 4000 check_termination: on (interval 25), scaling: on, scaled_termination: off warm start: on, polish: off, time_limit: off iter objective pri res dua res rho time 1 -7.2491e+00 2.04e+01 3.59e+00 1.00e-01 5.16e-05s 200 2.0000e+01 1.20e-06 5.81e-07 8.01e-02 1.18e-04s 250 2.0000e+01 2.27e-08 2.52e-09 8.01e-02 1.58e-04s status: solved number of iterations: 250 optimal objective: 20.0001 run time: 1.92e-04s optimal rho estimate: 1.24e-01 iter objective pri res dua res rho time 1 1.1673e+01 1.09e+01 2.39e+00 8.01e-02 2.77e-05s 50 5.3333e+01 2.49e-11 1.75e-11 8.01e-02 7.22e-05s status: solved number of iterations: 50 optimal objective: 53.3333 run time: 1.07e-04s optimal rho estimate: 1.17e-01 [ FAIL 0 | WARN 0 | SKIP 0 | PASS 20 ] > > proc.time() user system elapsed 1.56 0.31 1.87