################################# ## test profile and confint methods: library(ordinal) data(wine) fm1 <- clm(rating ~ contact + temp, data = wine) summary(fm1) ## profile.clm and confint.clm: pr1 <- profile(fm1) confint(pr1) pr1 <- profile(fm1, which.beta = 1:2) confint(pr1) pr1 <- profile(fm1, which.beta = 2:1) confint(pr1) pr1 <- profile(fm1, which.beta = 1) confint(pr1) pr1 <- profile(fm1, which.beta = 2) confint(pr1) pr1 <- try(profile(fm1, which.beta = 0), silent = TRUE) ## error pr1 <- try(profile(fm1, which.beta = "no.par"), silent = TRUE) ## error pr1 <- try(profile(fm1, which.beta = -1), silent = TRUE) ## error pr1 <- profile(fm1, which.beta = "tempwarm") confint(pr1) pr1 <- profile(fm1, alpha = 0.1) confint(pr1) ## should give NA in this case? pr1 <- profile(fm1, max.steps = 9) pr1 <- profile(fm1, step.warn = 7) pr1 <- profile(fm1, nsteps = 6) pr1 <- profile(fm1, trace = 1) pr1 <- profile(fm1, control = list(gradTol = .1)) confint(pr1) ## not at all unreliable... ## single regression coef setting: fm2 <- clm(rating ~ contact, data = wine) summary(fm2) pr2 <- profile(fm2) confint(pr2) ## confint.clm: confint(fm1) confint(fm1, 2) confint(fm1, 1) confint(fm1, "tempwarm") confint(fm1, type = "profile") confint(fm1, type = "Wald") confint(fm1, 2, type = "Wald") confint(fm1, level = 0.5) confint(fm1, level = 1 - 1e-6) confint(fm1, level = 1 - 1e-10) ## extreme, but it works confint(fm1, trace = 1) ## plot.profile: pr1 <- profile(fm1, which.beta=1:2, alpha = 1e-3) par(mfrow = c(1,2)) plot(pr1) plot(pr1, 1) plot(pr1, "contactyes") plot(pr1, level = .97) plot(pr1, Log = TRUE) plot(pr1, relative = FALSE) plot(pr1, root = TRUE) plot(pr1, approx = TRUE) plot(pr1, n=10) plot(pr1, ylim = c(0,2)) plot(pr1, las = 1) plot(pr2)