library(ordinal) data(wine) ## clm.fit with nominal and scale effects: ## get simple model: fm1 <- clm(rating ~ temp, scale=~temp, nominal=~ contact, data=wine, method="design") str(fm1, give.attr=FALSE) fm1$control$method <- "Newton" res <- clm.fit(fm1) names(res) res$Theta ## construct some weights and offsets: set.seed(1) off1 <- runif(length(fm1$y)) set.seed(1) off2 <- rnorm(length(fm1$y)) set.seed(1) wet <- runif(length(fm1$y)) ## Fit various models: fit <- clm.fit(fm1$y, fm1$X, fm1$S, fm1$NOM, weights=wet) Coef <- c(-0.905224120279548, 1.31043498891987, 3.34235590523008, 4.52389661722693, -3.03954652971192, -1.56922389038976, -1.75662549320839, -1.16845464236365, 2.52988580848393, -0.0261457032829033) stopifnot(all.equal(coef(fit), Coef, check.attributes=FALSE, tol=1e-6)) str(fit) fit <- clm.fit(fm1$y, fm1$X, fm1$S, fm1$NOM, offset=off1) str(fit) fit <- clm.fit(fm1$y, fm1$X, fm1$S, fm1$NOM, offset=off1, S.offset=off2) str(fit) fit <- clm.fit(fm1$y, fm1$X, fm1$S) str(fit) fit <- clm.fit(fm1$y, fm1$X) str(fit) fit <- clm.fit(fm1$y) coef(fit) str(fit) ## Remember: compare with corresponding .Rout file